3D NiS dendritic arrays on nickel foam as binder-free electrodes for supercapacitors

  • Yan Zhang
  • Jie Xu
  • Yingjiu Zhang
  • Xiaoyang Hu


In this work, we have successfully fabricated unique three-dimensional (3D) dendritic NiS nanosheet arrays on nickel foam (NiS–Ni) through a simple solution method, oxidizing fresh nickel foam under a heat treatment and following a sulfidation process without the need for any additional nickel sources, surfactant, or templates. The morphology of the NiS–Ni was observed by SEM and TEM, while the crystallinity was revealed by XRD pattern. When tested as the electrode for supercapacitors, the NiS dendritic arrays grown on nickel foam display excellent performance, demonstrating the specific capacity of 465.9 F g−1 at the current density of 1 A g−1. After 7000 cycles, the NiS–Ni electrode can maintain 101.79 % of its highest value, which demonstrates its superior cycle stability performance. Also, the NiS–Ni electrode exhibits high capacity retention when fast charging. These results establish that the NiS–Ni binder-free electrode exhibits greatly improved electrochemical performance with high capacitance and excellent cycling stability.


Specific Capacity Nickel Foam Electrical Double Layer Capacitor Excellent Cycling Stability Dendritic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work is financially supported by the Key Scientific and Technological Project of Henan Province, China (No. 082101510007).


  1. 1.
    X.Z. Yu, B.G. Lu, Z. Xu, Adv. Mater. 26, 1044 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Xiao, L. Xia, G. Liu, S. Wang, L.X. Ding, H. Wang, J. Mater. Chem. A 3, 6128 (2015)CrossRefGoogle Scholar
  3. 3.
    G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Energy Environ. Sci. 5, 9453 (2012)CrossRefGoogle Scholar
  4. 4.
    K.B. Xu, J. Chao, R.J. Zou, J.Q. Hu, X.J. Liu, W.Y. Li, RSC Adv. 4, 34307 (2014)CrossRefGoogle Scholar
  5. 5.
    S.E. Moosavifard, J. Shamsi, S. Fani, S. Kadkhodazade, RSC Adv. 4, 52555 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Huang, J. Liang, Y. Chen, Small 8, 1805 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Zhu, B. Xia, L. Zhou, X.W. Lou, J. Mater. Chem. 22, 7851 (2012)CrossRefGoogle Scholar
  8. 8.
    L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Nat. Commun. 2, 381 (2011)CrossRefGoogle Scholar
  9. 9.
    D. Guo, W. Ren, Z. Chen, M. Mao, Q. Li, T. Wang, RSC Adv. 5, 10681 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Cai, D. Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, H. Li, H. Huang, Q. Li, T. Wang, A.C.S. Appl, Mater. Interfaces 5, 12905 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347, 1246501 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Xia, C. Zhu, J. Lu, Z. Zeng, C. Guan, C.F. Ng, H. Zhang, H.J. Fan, Small 10, 766 (2014)CrossRefGoogle Scholar
  13. 13.
    W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Appl. Surf. Sci. 299, 12 (2014)CrossRefGoogle Scholar
  14. 14.
    M. Jayalakshmi, M.M. Rao, J. Power Sources 157, 624 (2006)CrossRefGoogle Scholar
  15. 15.
    Y. Li, K. Ye, K. Cheng, J. Yin, D. Cao, G. Wang, J. Power Sources 274, 943 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Yang, W. Guo, D. Li, C. Wei, H. Fan, L. Wu, W. Zheng, J. Power Sources 268, 113 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Yan, X. Tong, L. Ma, Y. Tian, Y. Cai, C. Gong, M. Zhang, L. Liang, Mater. Lett. 124, 133 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin, Y. Tian, Appl. Surf. Sci. 282, 704 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Peng, L. Li, X.W. Lou, S. Madhavi, H. Wu, Adv. Energy Mater. 5, 1401172 (2015)CrossRefGoogle Scholar
  20. 20.
    K.J. Huang, J.Z. Zhang, Y. Liu, Y.M. Liu, Int. J. Hydrog. Energy 40, 10158 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X.W. Lou, Adv. Funct. Mater. 22, 4592 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Adv. Mater. 24, 5166 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Yan, G. Lui, R. Tjandra, X. Wang, L. Rasenthiram, A. Yu, RSC Adv. 5, 27940 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, C. Nan, D. Wang, Y. Li, RSC Adv. 4, 47513 (2014)CrossRefGoogle Scholar
  25. 25.
    F. Cai, R. Sun, Y. Kang, H. Chen, M. Chen, Q. Li, RSC Adv. 5, 23073 (2015)CrossRefGoogle Scholar
  26. 26.
    L. Hou, C. Yuan, D. Li, L. Yang, L. Shen, F. Zhang, X. Zhang, Electrochim. Acta 56, 7454 (2011)CrossRefGoogle Scholar
  27. 27.
    X.Y. Liu, Q.Y. Li, M.W. Meng, T.F. Long, Z.L. Jiang, Solid State Sci. 13, 1375 (2011)CrossRefGoogle Scholar
  28. 28.
    W. Fu, L. Long, M. Wang, Y. Yao, N. Wei, M. Yan, G. Yin, X. Liao, Z. Huang, X. Chen, J. Alloys Compd. 631, 82 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Li, J. Xiao, Z. Wang, Z. Wei, Y. Qiu, S. Yang, Nano Energy 10, 329 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Singh, A. Chandra, J. Mater. Chem. A 2, 16723 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Yu, B. Yang, Q. Liu, J. Liu, X. Wang, D. Song, J. Wang, X. Jing, J. Electroanal. Chem. 739, 156 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Ruan, Y. Li, H. Qiu, M. Wei, J. Alloys Compd. 588, 357 (2014)CrossRefGoogle Scholar
  33. 33.
    N. Padmanathan, H. Shao, D. Mcnulty, K.M. Razeeb, J. Mater. Chem. A 4, 4820 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and Laboratory of Materials PhysicsZhengzhou UniversityZhengzhouChina
  2. 2.Department of Science of CollegeHenan Institute of EngineeringZhengzhouChina

Personalised recommendations