Optimized microstructure and energy-storage density of Sm2O3-added lead-free borate glass–ceramic composites

  • G. H. Chen
  • J. Zheng
  • Z. C. Li
  • C. L. Yuan
  • C. R. Zhou


Lead-free borate glass–ceramic composites added with Sm2O3 were synthesized through melt-quenching followed by controlled crystallization techniques. The structural and dielectric properties were characterized. The addition of 0.5 mol% Sm2O3 to the glass ceramics changed the dielectric permittivity and breakdown strength remarkably. The maximum theoretical energy density of 8.15 J/cm3 was achieved in the glass–ceramic with 0.5 mol% Sm2O3, which was improved by 2.6 times as compared with that of the pure glass–ceramic, suggesting dielectric glass–ceramic composite of this composition could be the most attractive candidate for high energy density capacitors.


Dielectric Constant Sm2O3 Dielectric Loss Ceramic Composite Borate Glass 



The authors would like to acknowledge funding from National Natural Science Foundation of China (51162002) and Science and Technology Project of Guangxi Returned Personnel (2012-250).


  1. 1.
    B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334 (2006)CrossRefGoogle Scholar
  2. 2.
    E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, J. Electroceram. 18, 269 (2007)CrossRefGoogle Scholar
  3. 3.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, J. Phys. D Appl. Phys. 29, 253 (1996)CrossRefGoogle Scholar
  4. 4.
    B. Rangarajan, B. Jones, T. Shrout, M. Lanagan, J. Am. Ceram. Soc. 90, 784 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Herczog, I.E.E.E. Trans, Parts Hybrids Packag. 9, 245 (1973)Google Scholar
  6. 6.
    S.X. Xue, S.H. Liu, W.Q. Zhang, B. Shen, J.W. Zhai, Ceram. Int. 41, 441 (2015)CrossRefGoogle Scholar
  7. 7.
    T.Y. Liu, G.H. Chen, J. Song, C.L. Yuan, Ceram. Int. 39, 5553 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Song, G.H. Chen, C.L. Yuan, Y. Yang, Mater. Lett. 117, 7 (2014)CrossRefGoogle Scholar
  9. 9.
    Wenqin Zhang, Jinwen Wang, Shuangxi Xue, Shaohui Liu, Bo Shen, Jiwei Zhai, J. Mater. Sci.: Mater. Electron. 25, 4145 (2014)Google Scholar
  10. 10.
    Shi Xiao, Shaomei Xiu, Shuangxi Xue, Bo Shen, Jiwei Zhai, J. Alloys Compd. 648, 745 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Luo, J. Du, Q. Tang, C. Mao, I.E.E.E. Trans, Electron Devices 55, 3549 (2008)CrossRefGoogle Scholar
  12. 12.
    Y.K. Zeng, X.Y. Qin, S.L. Jiang, G.Z. Zhang, L. Zhang, J. Am. Ceram. Soc. 94, 469 (2011)CrossRefGoogle Scholar
  13. 13.
    Yi Zhou, Q.M. Zhang, J. Luo, Q. Tang, J. Du, J. Du J. Am. Ceram. Soc. 96, 372 (2013)Google Scholar
  14. 14.
    Yi Zhou, Q.M. Zhang, J. Luo, Q. Tang, J. Du, J. Du Scripta Mater. 65, 296 (2011)CrossRefGoogle Scholar
  15. 15.
    S.X. Xue, S.H. Liu, W.Q. Zhang, B. Shen, J.W. Zhai, Appl. Phys. Lett. 106, 162903 (2015)CrossRefGoogle Scholar
  16. 16.
    R.D. Shannon, C.T. Prewitt, Crystal Eng. Mater. 25, 925 (1969)Google Scholar
  17. 17.
    S.J. Liu, B. Wan, P. Wang, S.H. Song, Scripta Mater. 63, 124 (2010)CrossRefGoogle Scholar
  18. 18.
    P. Lu, Y. Zheng, J.S. Cheng, D.Y. Guo, Ceram. Int. 39, 8207 (2013)CrossRefGoogle Scholar
  19. 19.
    A.K. Yadav, C. Gautam, P. Singh, New J. Glass. Ceram. 2, 126 (2012)CrossRefGoogle Scholar
  20. 20.
    C. Filipic, Z. Kutnjak, R. Lortz, A. Torres-Pardo, M. Dawber, J.F. Scott, J. Phys.: Condens. Matter 19, 236206 (2007)Google Scholar
  21. 21.
    A. Kishimoto, K. Koumoto, H. Yanagida, J. Sci. 24, 698 (1989)Google Scholar
  22. 22.
    A.L. Young, G.E. Hilmas, S.C. Zhang, R.W. Schwartz, J. Mater. Sci. 42, 5613 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. H. Chen
    • 1
  • J. Zheng
    • 1
  • Z. C. Li
    • 1
  • C. L. Yuan
    • 1
  • C. R. Zhou
    • 1
  1. 1.College of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations