Photoelectrochemical determination of Pb2+ ions by using TiO2 nanorod arrays grown on FTO substrates via a facile two-stage hydrothermal route

  • Shengping Li
  • Xiuquan Gu
  • Yulong Zhao
  • Yinghuai Qiang
  • Shuang Zhang


Aligned TiO2 nanorod arrays (NRAs) were fabricated on TiCl4 pretreated fluorine doped tin oxide (SnO2:F, FTO) substrates by a facile hydrothermal route. The effects of TiCl4 concentration (20, 40 and 60 mM) and post-growth treatments were investigated on the PEC performance of TiO2 NRAs. The optimal PEC performance, owning a low Pb2+ detection limit of ~2 nM, was achieved in the TiO2 NRAs which was pretreated with 20 mM TiCl4 and sintered after growth. It implied that the modification of FTO substrates with a low TiCl4 concentration was critical for achieving the ideal morphology and performance of TiO2 NRAs which reached a balance of light harvesting, carrier transport and ion diffusion. Additionally, it was also worth mentioning that the TiCl4 post-treatment wasn’t beneficial to improve the PEC performance of the compact TiO2 NRAs.


TiO2 SnO2 TiCl4 Seeding Layer TiO2 Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by the Fundamental Research Funds for the Central Universities (2015XKZD01).


  1. 1.
    A.A. Chavan, H. Li, A. Scarpellini, S. Marras, L. Manna, A. Athanassiou, D. Fragouli, ACS Appl. Mater. Interfaces 7, 14778 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Maeda, Y. Morinaga, Y. Tomita, K. Kobayashi, Electrochim. Acta 54, 1757 (2009)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, K. Huo, X. Peng, R. Xu, P. Li, R. Chen, G. Zheng, Z. Wu, P.K. Chu, Chem. Commun. 49, 7091 (2013)CrossRefGoogle Scholar
  4. 4.
    R. Wang, X. Pang, H. Zhang, P. Gao, B. Du, H. Ma, Q. Wei, Anal. Methods 7, 5406 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Wen, X. Wen, M.M.F. Choi, S. Shuang, Sens. Actuators B Chem. 221, 1449 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Tang, P. Tong, W. Lu, J. Chen, Z. Yan, L. Zhang, Biosens. Bioelectron. 59, 1 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Zhao, B. Cai, Y. Ma, H. Cai, J. Huang, X. Pan, H. He, Z. Ye, Biosens. Bioelectron. 61, 443 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  9. 9.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)CrossRefGoogle Scholar
  10. 10.
    N. Ibrahim, S.K. Kamarudin, L.J. Minggu, J. Power Sources 259, 33 (2014)CrossRefGoogle Scholar
  11. 11.
    F.X. Xiao, ACS Appl. Mater. Interfaces 4, 7055 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Luo, C. Dong, X. Li, Y. Tian, J. Electroanal. Chem. 759, 51 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Li, N. Wu, Catal. Sci. Technol. 5, 1360 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43, 6920 (2014)CrossRefGoogle Scholar
  16. 16.
    J.R. Jenning, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, J. Am. Chem. Soc. 130, 13364 (2008)CrossRefGoogle Scholar
  17. 17.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2008)CrossRefGoogle Scholar
  18. 18.
    X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Lv, D. Zheng, M. Ye, J. Xiao, W. Guo, Y. Lai, L. Sun, C. Lin, J. Zuo, Energy Environ. Sci. 6, 1615 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Hoang, S. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Nano Lett. 12, 26 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Lai, H. Zhuang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin, Z. Chen, N. J. Chem. 34, 1335 (2010)CrossRefGoogle Scholar
  23. 23.
    Y.L. Zhao, X.Q. Gu, Y.H. Qiang, Thin Solid Film 520, 2814 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Zhang, X.Q. Gu, Y.L. Zhao, Y.H. Qiang, J. Electron. Mater. 45, 648 (2015)CrossRefGoogle Scholar
  25. 25.
    S.A. Berhe, S. Nag, Z. Molinets, W.J. Youngblood, ACS Appl. Mater. Interfaces 5, 1181 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Yella, L.P. Heiniger, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nano Lett. 14, 2591 (2014)CrossRefGoogle Scholar
  27. 27.
    J.H. Bang, P.V. Kamat, Adv. Funct. Mater. 20, 1970 (2010)CrossRefGoogle Scholar
  28. 28.
    Z. Jin, Y. Wang, S. Chen, G. Li, L. Wang, H. Zhu, X. Zhang, Y. Liu, RSC Adv. 6, 10450 (2016)CrossRefGoogle Scholar
  29. 29.
    X.Q. Gu, Y.L. Zhao, Y.H. Qiang, J. Mater. Sci. Mater. Electron. 23, 1373 (2012)CrossRefGoogle Scholar
  30. 30.
    J. Song, G.R. Li, K. Xi, B. Lei, X.P. Gao, R.V. Kumar, J. Mater. Chem. A 2, 10041 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shengping Li
    • 1
  • Xiuquan Gu
    • 1
  • Yulong Zhao
    • 1
  • Yinghuai Qiang
    • 1
  • Shuang Zhang
    • 1
  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations