Photocatalytic and magnetic properties of loosened ceria hollow microspheres synthesized by a single-step hydrothermal method

  • Fanming Meng
  • Huijie Li
  • Jinfeng Gong
  • Zhenghua Fan


Loosened CeO2 hollow microspheres with 0.5–1 μm in diameter have been successfully synthesized by a single-step hydrothermal method using Ce(NO3)·6H2O as cerium, urea as precipitant, HNO3 as mineralizer, and polyvinyl pyrrolidone as complexant at 200 °C for different time periods. X-ray diffraction inferred that Ce(OH)CO3 was gradually transformed to CeO2 with increasing reaction time from 12 to 60 h, and no Ce(OH)CO3 was detected but CeO2 when the reaction time was 60 h. XPS and UV–Vis absorption spectra analysis indicated that the as-synthesized CeO2 contained a large number of Ce3+ in their surface. M–H curve for the loosened CeO2 hollow microspheres showed an excellent ferromagnetic behavior at room-temperature, which can be attributed to the presence of Ce3+ ions. The BET surface area of the catalyst was confirmed to be 83.83 m2 g−1 synthesized at 200 °C for 60 h. Correspondingly, its pore width distribution was 6.5 nm. The photocatalytic activities of the ceria were evaluated by the photodegradation of methyl orange under UV light irradiation. Not only the presence of Ce3+ ions, but the high surface area led to the excellent photocatalytic performance of the loosened CeO2 hollow microspheres.


CeO2 Photocatalytic Activity Methyl Orange Degradation Rate Constant Methyl Orange Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Anhui Provincial Natural Science Foundation of China (1508085SME219).


  1. 1.
    F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P.F.G. Comelli, R. Rosei, Science 309, 752–755 (2005)CrossRefGoogle Scholar
  2. 2.
    L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Appl. Surf. Sci. 286, 269–274 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Imagawa, A. Suda, K. Yamamura, S.H. Sun, J. Phys. Chem. C 115, 1740–1745 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Jiao, F. Wang, X. Ma, Q. Tang, K. Wang, Y. Guo, L. Yang, Microporous Mesoporous Mater. 176, 1–7 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Sun, G. Zou, S. Xu, X. Wang, Mater. Chem. Phys. 134, 912–920 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Moser, C. Mondelli, T. Schmidt, F. Girgsdies, M.E. Schuster, R. Farra, L. Szentmiklósi, D. Teschner, J. Perez-Ramirez, Appl. Catal. B-Environ. 132–133, 123–131 (2013)CrossRefGoogle Scholar
  7. 7.
    T. Feng, X. Wang, G. Feng, Mater. Lett. 100, 36–39 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Ozawa, H. Yuzuriha, M. Haneda, Catal. Commun. 30, 32–35 (2013)CrossRefGoogle Scholar
  9. 9.
    C.T. Campbell, C.H. Peden, Science 309, 713–714 (2005)CrossRefGoogle Scholar
  10. 10.
    B. Sun, W.X. Zhao, L.J. Wei, H.W. Jia, P. Chen, Chem. Commun. 50, 13142–13145 (2014)CrossRefGoogle Scholar
  11. 11.
    B. Sun, P. Han, W.X. Zhao, Y.H. Liu, P. Chen, J. Phys. Chem. C 118, 18814–18819 (2014)CrossRefGoogle Scholar
  12. 12.
    Z.Y. Guo, F.L. Du, G.C. Li, Z.L. Cu, Cryst. Growth Des. 8, 2674–2677 (2008)CrossRefGoogle Scholar
  13. 13.
    Z. Guo, F. Du, Z. Cui, Mater. Chem. Phys. 113, 53–56 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Meng, L. Wang, J. Cui, J. Alloy. Compd. 556, 102–108 (2013)CrossRefGoogle Scholar
  15. 15.
    R.K. Singhal, S. Kumar, A. Samariya, M. Dhawan, S.C. Sharma, Y.T. Xing, Mater. Chem. Phys. 132, 534–539 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Biswajit, C. Mater, Chem. Phys. 131, 666–671 (2012)Google Scholar
  17. 17.
    Y. Liu, Z. Lockman, A. Aziz, J. MacManus-Driscoll, J. Phys, Condens. Matter 20, 165201–165205 (2008)CrossRefGoogle Scholar
  18. 18.
    L. Wang, F. Meng, Mater. Res. Bull. 48, 3492–3498 (2013)CrossRefGoogle Scholar
  19. 19.
    R. Yu, L. Yan, P. Zheng, J. Chen, X. Xing, J. Phys. Chem. C 112, 19896–199900 (2008)CrossRefGoogle Scholar
  20. 20.
    F. Lasachi, J. Pierre, A. Adnot, A. Bernis, Appl. Surf. Sci. 195, 236–250 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423–428 (2009)CrossRefGoogle Scholar
  22. 22.
    M.Y. Chen, X.T. Zu, X. Xiang, H.L. Zhang, Phys. B Condens. Matter. 389, 263–268 (2007)CrossRefGoogle Scholar
  23. 23.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  24. 24.
    B. Sun, C.M. Li, Phys. Chem. Chem. Phys. 17, 6718–6721 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Sun, X.J. Jia, J.H. Wu, P. Chen, J. Alloy. Compd. 653, 95–99 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Chen, C. Tsai, M. Huang, D. Yan, T. Huang, A. Gloter, J. Nanomater. 2011, 1–6 (2011)Google Scholar
  27. 27.
    B.D. Yuhas, S. Fakra, M.A. Marcus, P. Yang, Nano Lett. 7, 905–909 (2007)CrossRefGoogle Scholar
  28. 28.
    D. Priour, S. Das Sarma, Phys. Rev. Lett. 97, 127701–127704 (2006)CrossRefGoogle Scholar
  29. 29.
    B.M. Reddy, P.M. Sreekanth, Y. Yamada, T. Kobayashi, J. Mol. Catal. A Chem. 227, 81–89 (2005)CrossRefGoogle Scholar
  30. 30.
    B. Ohtani, Y. Ogawa, S.I. Nishimoto, J. Phys. Chem. B 101, 3746–3752 (1997)CrossRefGoogle Scholar
  31. 31.
    V. Matolin, I. Matolinova, L. Sedlacek, K.C. Prince, T. Skala, Nanotechnology 20, 215706–215713 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fanming Meng
    • 1
    • 2
  • Huijie Li
    • 1
  • Jinfeng Gong
    • 1
  • Zhenghua Fan
    • 1
  1. 1.School of Physics and Materials ScienceAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Key Laboratory of Materials Modification by Laser, Ion and Electron BeamsDalian University of Technology, Ministry of EducationDalianPeople’s Republic of China

Personalised recommendations