Multi-walled carbon nanotubes/TiO2 thin layer for photocatalytic degradation of organic pollutant under visible light irradiation

  • Mehdi Rahbar
  • Mohsen Behpour


This paper is based on preparation of MWCNT/TiO2 photoactive thin layer deposited on glass substrate using the sol–gel dip-coating technique. The thin layer consists of TiO2 coupled with different amount of per-noncovalent functionalized multi-walled carbon nanotubes (MWCNTs). The optimum MWCNTs/TiO2 weight ratio in the thin film was found to be 1.75 % under the experimental conditions investigated. The MWCNT/TiO2 film was characterized by a range of analytical techniques including: scanning electron microscopy, atomic force microscopy, X-ray diffraction, photoluminescence spectra, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and UV–Vis spectroscopy. The photoactivity of the prepared films, under visible light irradiation, was evaluated by decoloration of methyl orange (MO). Complete decoloration of MO was observed only in 2 h under visible light irradiation. Furthermore, we used chemical oxygen demand (COD) method to determine the degradation efficiency of the MWCNT/TiO2 thin layer. 42 % reduction in COD value of treated MO solution shows substantial degradation of MO by photoactive film. According to the results of MO removal experiment, the excellent activity of the photoactive film can be attributed to the strong interaction between TiO2 particles and MWCNT bundles and the high electron acceptability of CNTs network.


TiO2 Chemical Oxygen Demand Photocatalytic Activity Methyl Orange Visible Light Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to University of Kashan for supporting this work with Grant No. 2564508.


  1. 1.
    L. Yang, L. Yu, M. Ray, Environ. Sci. Technol. 43, 460 (2009)CrossRefGoogle Scholar
  2. 2.
    S.Y. Murakami, H. Kominami, Y. Kera, S. Ikeda, H. Noguchi, K. Uosaki, B. Ohtani, Res. Chem. Intermed. 33, 285 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Minero, D. Vione, Appl. Catal. B: Environ. 67, 257 (2006)CrossRefGoogle Scholar
  4. 4.
    J. Ouyang, M. Chang, X. Li, J. Mater. Sci. 47, 4187 (2012)CrossRefGoogle Scholar
  5. 5.
    D. Robert, Catal. Today 122, 20 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Westerhoff, G. Song, K. Hristovski, M.A. Kiser, J. Environ. Monit. 13, 1195 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Daghrir, P. Drogui, D. Robert, J. Photochem. Photobiol. A: Chem. 238, 41 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Bickley, T. Gonzalez-Carreno, J.S. Lees, L. Palmisano, R.J.D. Tilley, J. Solid State Chem. 92, 178 (1991)CrossRefGoogle Scholar
  9. 9.
    S.H. Lee, S. Pumprueg, B. Moudgil, W. Sigmund, Colloids. Surf. B: Biointerfaces 40, 93 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Kongkanand, P. Kamat, ACS Nano 1, 13 (2007)CrossRefGoogle Scholar
  11. 11.
    O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Carbon 47, 3280 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Khalilian, M. Behpour, V. Atouf, S.N. Hosseini, Sol. Energy 112, 239 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Yan, B.K. Tay, Y. Yang, J. Phys. Chem. B 110, 25844 (2006)CrossRefGoogle Scholar
  14. 14.
    L. Nollet, L. De Gelder, Handbook of Water Analysis, 3rd edn. (CRC Press, Boca Raton, 2011), p. 466Google Scholar
  15. 15.
    X. Li, R. Xiong, G. Wei, Catal. Lett. 125, 104 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Lin, S. Taylor, H. Li, K.A.S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. Sun, J. Mater. Chem. 14, 527 (2004)CrossRefGoogle Scholar
  17. 17.
    O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
  18. 18.
    L. Kavan, M. Gratzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996)CrossRefGoogle Scholar
  19. 19.
    K. Tanaka, M.F.V. Capule, T. Hisanaga, Chem. Phys. Lett. 187, 73 (1991)CrossRefGoogle Scholar
  20. 20.
    H.P. Maruska, A.K. Ghosh, Sol. Energy 20, 443 (1978)CrossRefGoogle Scholar
  21. 21.
    D. Wang, B. Yu, F. Zhou, C. Wang, W. Liu, Mater. Chem. Phys. 113, 602 (2009)CrossRefGoogle Scholar
  22. 22.
    X.H. Xia, Z.J. Jia, Y. Yu, Y. Liang, Z. Wang, L.L. Ma, Carbon 45, 717 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Hamadanian, A. Reisi-Vanani, A. Majedi, Appl. Surf. Sci. 256, 1837 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Appl. Catal. B: Environ. 61, 1 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Yu, X. Quan, S. Chen, H. Zhao, J. Phys. Chem. C 111, 12987 (2007)CrossRefGoogle Scholar
  26. 26.
    K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21, 2233 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Yao, G. Li, S. Ciston, R. Lueptow, K. Gary, Environ. Sci. Technol. 42, 4952 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Appl. Catal. B 61, 1 (2005)CrossRefGoogle Scholar
  29. 29.
    N. Bai, S.G. Li, H.Y. Chen, W.Q. Pang, J. Mater. Chem. 11, 3099 (2001)CrossRefGoogle Scholar
  30. 30.
    B. Zou, L. Xiao, T. Li, J. Zhao, Z. Lai, S. Gu, Appl. Phys. Lett. 59, 1826 (1991)CrossRefGoogle Scholar
  31. 31.
    J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, W.K. Ho, J. Phys. Chem. B 107, 13871 (2003)CrossRefGoogle Scholar
  32. 32.
    Y. Liang, H. Wang, H.S. Casalongue, Z. Chen, H. Dai, Nano Res. 3, 701 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Trabelsi, M. Khadhraoui, O. Hentati, M. Ksibi, Toxicol. Environ. Chem. 95, 543 (2013)CrossRefGoogle Scholar
  34. 34.
    V. Augugliaro, C. Baiocchi, A.B. Prevot, E. Garcia-Lopez, V. Loddo, S. Malato, G. Marci, L. Palmisano, M. Pazzi, E. Pramauro, Chemosphere 49, 1223 (2002)CrossRefGoogle Scholar
  35. 35.
    T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 362, 337 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Riggs, Z. Guo, D. Carroll, Y.P. Sun, J. Am. Chem. Soc. 122, 5879 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of Analytical Chemistry, Faculty of ChemistryUniversity of KashanKashanIran

Personalised recommendations