Comparison of upconversion luminescent properties and temperature sensing behaviors of β-NaYF4:Yb3+/Er3+ nano/microcrystals prepared by various synthetic methods

  • Junhua Xi
  • Mingye Ding
  • Jianbin Dai
  • Yajing Pan
  • Daqin Chen
  • Zhenguo Ji


In this paper, Yb3+/Er3+ co-doped hexagonal NaYF4 have been successfully synthesized by solvothermal, thermal decomposition, hydrothermal and molten salt method, respectively. The crystal structures, particle morphologies, sizes and corresponding upconversion luminescent properties of β-NaYF4:Yb3+/Er3+ nano/microcrystals are systemically studied. It is interesting to observed that the temperature-dependent UC luminescent properties of β-NaYF4:20 %Yb3+, 2 %Er3+ samples are strongly related to their synthesis methods. Comparison of the upconversion luminescence and thermal sensitivity between the β-NaYF4:Yb3+/Er3+ samples reveals that β-NaYF4:Yb3+/Er3+ sub-microplates synthesized by thermal decomposition method have much stronger green emission intensity, better luminescent thermal stability and higher temperature sensitivity. This findings are relevant to the application of β-NaYF4:Yb3+/Er3+ in optical temperature sensors and to the further understanding of the UC luminescent mechanism.


NaYF4 Nonradiative Relaxation Thermal Decomposition Method Molten Salt Method High Temperature Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project has been financially supported by Zhejiang Provincial Natural Science Foundation of China (LQ15E020004), the National Natural Science Foundation of China (61372025), the college students’ activities of science and technology innovation in Zhejiang Province (2015R407033) and the Science and Technology Project of Zhejiang Province (2015C37037).


  1. 1.
    E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A three-color, solid-state, three-dimensional display. Science 273, 1185 (1996)CrossRefGoogle Scholar
  2. 2.
    R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237–242 (2015)CrossRefGoogle Scholar
  3. 3.
    F. Huang, Y. Gao, J. Zhou, J. Xu, Y. Wang, Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing. J. Alloys Compd. 639, 325–329 (2015)CrossRefGoogle Scholar
  4. 4.
    M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, F. Xu, Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale 7, 4423–4431 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, Z. Ji, Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core-shell nanoarchitecture. J. Mater. Chem. C 3, 5372–5376 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, Y. Xia, Y. Jiang, M. Zhang, W. Sun, X.-Z. Zhao, Coupling effects of Au-decorated core-shell β-NaYF4:Er/Yb@SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion. Electrochim. Acta 180, 394–400 (2015)CrossRefGoogle Scholar
  7. 7.
    B. Qu, Y. Jiao, S. He, Y. Zhu, P. Liu, J. Sun, J. Lu, X. Zhang, Improved performance of a-Si: H solar cell by using up-conversion phosphors. J. Alloys Compd. 658, 848–853 (2016)CrossRefGoogle Scholar
  8. 8.
    W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem. Commun. 46, 2304–2306 (2010)CrossRefGoogle Scholar
  9. 9.
    Z. Zhang, W. Wang, W. Yin, M. Shang, L. Wang, S. Sun, Inducing photocatalysis by visible light beyond the absorption edge: effect of upconversion agent on the photocatalytic activity of Bi2WO6. Appl. Catal. B Environ. 101, 68–73 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, J. Lin, Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 20, 1166–1172 (2010)CrossRefGoogle Scholar
  11. 11.
    X. Huang, J. Lin, Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles. J. Mater. Chem. C 3, 7652–7657 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, F. Li, An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. Nanoscale 7, 4105–4113 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Chen, P. Huang, Y. Yu, F. Huang, A. Yang, Y. Wang, Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 47, 5801–5803 (2011)CrossRefGoogle Scholar
  14. 14.
    S.H. Lee, J.I. Choi, Y.J. Kim, J.K. Han, J. Ha, E. Novitskaya, J.B. Talbot, J. McKittrick, Comparison of luminescent properties of Y2O3:Eu3+ and LaPO4:Ce3+, Tb3+ phosphors prepared by various synthetic methods. Mater. Charact. 103, 162–169 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, H. Guo, Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics. Sens. Actuators B Chem. 224, 507–513 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Li, Z. Quan, J. Yang, P. Yang, J. Lin, Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg. Chem. 46, 6329–6337 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Ding, S. Yin, Y. Ni, C. Lu, D. Chen, J. Zhong, Z. Ji, Z. Xu, Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology- and size-dependent upconversion luminescence. Ceram. Int. 41, 7411–7420 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Ding, S. Yin, D. Chen, J. Zhong, Y. Ni, C. Lu, Z. Xu, Z. Ji, Hexagonal NaYF4:Yb3+/Er3+ nano/micro-structures: controlled hydrothermal synthesis and morphology-dependent upconversion luminescence. Appl. Surf. Sci. 333, 23–33 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)CrossRefGoogle Scholar
  20. 20.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, E. Lalla, V. Lavín, Temperature sensor based on the Er3 + green upconverted emission in a fluorotellurite glass. Sens. Actuators B Chem. 158, 208–213 (2011)CrossRefGoogle Scholar
  21. 21.
    S.K. Singh, K. Kumar, S.B. Rai, Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Sens. Actuators A Phys. 149, 16–20 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Wu, J. Cui, X. Kong, Y. Wang, Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals. J. Appl. Phys. 110, 053510 (2011)CrossRefGoogle Scholar
  23. 23.
    A.M. Pires, O.A. Serra, S. Heer, H.U. Güdel, Low-temperature upconversion spectroscopy of nanosized Y2O3:Er, Yb phosphor. J. Appl. Phys. 98, 063529 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Li, Q. Shao, Y. Dong, J. Jiang, Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles. J. Phys. Chem. C 118, 22807–22813 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Shan, M. Uddi, N. Yao, Y. Ju, Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence. Adv. Funct. Mater. 20, 3530–3537 (2010)CrossRefGoogle Scholar
  26. 26.
    B. Dong, R.N. Hua, B.S. Cao, Z.P. Li, Y.Y. He, Z.Y. Zhang, O.S. Wolfbeis, Size dependence of the upconverted luminescence of NaYF4:Er, Yb microspheres for use in ratiometric thermometry. Phys. Chem. Chem. Phys. 16, 20009–20012 (2014)CrossRefGoogle Scholar
  27. 27.
    W. Huang, M. Ding, H. Huang, C. Jiang, Y. Song, Y. Ni, C. Lu, Z. Xu, Uniform NaYF4:Yb, Tm hexagonal submicroplates: controlled synthesis and enhanced UV and blue upconversion luminescence. Mater. Res. Bull. 48, 300–304 (2013)CrossRefGoogle Scholar
  28. 28.
    L. Wang, Y. Li, Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727–734 (2007)CrossRefGoogle Scholar
  29. 29.
    L. Tong, X. Li, R. Hua, X. Li, H. Zheng, J. Sun, J. Zhang, L. Cheng, B. Chen, Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4:Yb3+/Er3+ nano-/micro-crystals derived from a microwave-assisted hydrothermal route. J. Lumin. 167, 386–390 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004)CrossRefGoogle Scholar
  31. 31.
    Y. Wei, H. Yang, X. Li, L. Wang, H. Guo, Elaboration, structure, and intense upconversion in transparent KYb2F7:Ho3+ glass-ceramics. J. Am. Ceram. Soc. 97, 2012–2015 (2014)CrossRefGoogle Scholar
  32. 32.
    J.F. Suyver, J. Grimm, K.W. Krämer, H.U. Güdel, Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+, Yb3+. J. Lumin. 114, 53–59 (2005)CrossRefGoogle Scholar
  33. 33.
    W. Yu, W. Xu, H. Song, S. Zhang, Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase. Dalton Trans. 43, 6139–6147 (2014)CrossRefGoogle Scholar
  34. 34.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, P. Haro-González, I.R. Martín, V. Lavín, Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sens. Actuators B Chem. 174, 176–186 (2012)CrossRefGoogle Scholar
  35. 35.
    M.A.R.C. Alencar, G.S. Maciel, C.B. de Araújo, A. Patra, Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 84, 4753–4755 (2004)CrossRefGoogle Scholar
  36. 36.
    D. Li, Q. Shao, Y. Dong, J. Jiang, Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates. Mater. Lett. 110, 233–236 (2013)CrossRefGoogle Scholar
  37. 37.
    X. Wang, X. Kong, Y. Yu, Y. Sun, H. Zhang, Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity. J. Phys. Chem. C 111, 15119–15124 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouPeople’s Republic of China

Personalised recommendations