Skip to main content
Log in

Comparison of upconversion luminescent properties and temperature sensing behaviors of β-NaYF4:Yb3+/Er3+ nano/microcrystals prepared by various synthetic methods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Yb3+/Er3+ co-doped hexagonal NaYF4 have been successfully synthesized by solvothermal, thermal decomposition, hydrothermal and molten salt method, respectively. The crystal structures, particle morphologies, sizes and corresponding upconversion luminescent properties of β-NaYF4:Yb3+/Er3+ nano/microcrystals are systemically studied. It is interesting to observed that the temperature-dependent UC luminescent properties of β-NaYF4:20 %Yb3+, 2 %Er3+ samples are strongly related to their synthesis methods. Comparison of the upconversion luminescence and thermal sensitivity between the β-NaYF4:Yb3+/Er3+ samples reveals that β-NaYF4:Yb3+/Er3+ sub-microplates synthesized by thermal decomposition method have much stronger green emission intensity, better luminescent thermal stability and higher temperature sensitivity. This findings are relevant to the application of β-NaYF4:Yb3+/Er3+ in optical temperature sensors and to the further understanding of the UC luminescent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A three-color, solid-state, three-dimensional display. Science 273, 1185 (1996)

    Article  Google Scholar 

  2. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237–242 (2015)

    Article  Google Scholar 

  3. F. Huang, Y. Gao, J. Zhou, J. Xu, Y. Wang, Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing. J. Alloys Compd. 639, 325–329 (2015)

    Article  Google Scholar 

  4. M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, F. Xu, Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale 7, 4423–4431 (2015)

    Article  Google Scholar 

  5. M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, Z. Ji, Achieving efficient Tb3+ dual-mode luminescence via Gd-sublattice-mediated energy migration in a NaGdF4 core-shell nanoarchitecture. J. Mater. Chem. C 3, 5372–5376 (2015)

    Article  Google Scholar 

  6. Y. Liu, Y. Xia, Y. Jiang, M. Zhang, W. Sun, X.-Z. Zhao, Coupling effects of Au-decorated core-shell β-NaYF4:Er/Yb@SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion. Electrochim. Acta 180, 394–400 (2015)

    Article  Google Scholar 

  7. B. Qu, Y. Jiao, S. He, Y. Zhu, P. Liu, J. Sun, J. Lu, X. Zhang, Improved performance of a-Si: H solar cell by using up-conversion phosphors. J. Alloys Compd. 658, 848–853 (2016)

    Article  Google Scholar 

  8. W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem. Commun. 46, 2304–2306 (2010)

    Article  Google Scholar 

  9. Z. Zhang, W. Wang, W. Yin, M. Shang, L. Wang, S. Sun, Inducing photocatalysis by visible light beyond the absorption edge: effect of upconversion agent on the photocatalytic activity of Bi2WO6. Appl. Catal. B Environ. 101, 68–73 (2010)

    Article  Google Scholar 

  10. S. Gai, P. Yang, C. Li, W. Wang, Y. Dai, N. Niu, J. Lin, Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 20, 1166–1172 (2010)

    Article  Google Scholar 

  11. X. Huang, J. Lin, Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles. J. Mater. Chem. C 3, 7652–7657 (2015)

    Article  Google Scholar 

  12. X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng, F. Li, An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. Nanoscale 7, 4105–4113 (2015)

    Article  Google Scholar 

  13. D. Chen, P. Huang, Y. Yu, F. Huang, A. Yang, Y. Wang, Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 47, 5801–5803 (2011)

    Article  Google Scholar 

  14. S.H. Lee, J.I. Choi, Y.J. Kim, J.K. Han, J. Ha, E. Novitskaya, J.B. Talbot, J. McKittrick, Comparison of luminescent properties of Y2O3:Eu3+ and LaPO4:Ce3+, Tb3+ phosphors prepared by various synthetic methods. Mater. Charact. 103, 162–169 (2015)

    Article  Google Scholar 

  15. J. Cao, X. Li, Z. Wang, Y. Wei, L. Chen, H. Guo, Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics. Sens. Actuators B Chem. 224, 507–513 (2016)

    Article  Google Scholar 

  16. C. Li, Z. Quan, J. Yang, P. Yang, J. Lin, Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg. Chem. 46, 6329–6337 (2007)

    Article  Google Scholar 

  17. M. Ding, S. Yin, Y. Ni, C. Lu, D. Chen, J. Zhong, Z. Ji, Z. Xu, Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology- and size-dependent upconversion luminescence. Ceram. Int. 41, 7411–7420 (2015)

    Article  Google Scholar 

  18. M. Ding, S. Yin, D. Chen, J. Zhong, Y. Ni, C. Lu, Z. Xu, Z. Ji, Hexagonal NaYF4:Yb3+/Er3+ nano/micro-structures: controlled hydrothermal synthesis and morphology-dependent upconversion luminescence. Appl. Surf. Sci. 333, 23–33 (2015)

    Article  Google Scholar 

  19. F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)

    Article  Google Scholar 

  20. S.F. León-Luis, U.R. Rodríguez-Mendoza, E. Lalla, V. Lavín, Temperature sensor based on the Er3 + green upconverted emission in a fluorotellurite glass. Sens. Actuators B Chem. 158, 208–213 (2011)

    Article  Google Scholar 

  21. S.K. Singh, K. Kumar, S.B. Rai, Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Sens. Actuators A Phys. 149, 16–20 (2009)

    Article  Google Scholar 

  22. K. Wu, J. Cui, X. Kong, Y. Wang, Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals. J. Appl. Phys. 110, 053510 (2011)

    Article  Google Scholar 

  23. A.M. Pires, O.A. Serra, S. Heer, H.U. Güdel, Low-temperature upconversion spectroscopy of nanosized Y2O3:Er, Yb phosphor. J. Appl. Phys. 98, 063529 (2005)

    Article  Google Scholar 

  24. D. Li, Q. Shao, Y. Dong, J. Jiang, Anomalous temperature-dependent upconversion luminescence of small-sized NaYF4:Yb3+, Er3+ nanoparticles. J. Phys. Chem. C 118, 22807–22813 (2014)

    Article  Google Scholar 

  25. J. Shan, M. Uddi, N. Yao, Y. Ju, Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence. Adv. Funct. Mater. 20, 3530–3537 (2010)

    Article  Google Scholar 

  26. B. Dong, R.N. Hua, B.S. Cao, Z.P. Li, Y.Y. He, Z.Y. Zhang, O.S. Wolfbeis, Size dependence of the upconverted luminescence of NaYF4:Er, Yb microspheres for use in ratiometric thermometry. Phys. Chem. Chem. Phys. 16, 20009–20012 (2014)

    Article  Google Scholar 

  27. W. Huang, M. Ding, H. Huang, C. Jiang, Y. Song, Y. Ni, C. Lu, Z. Xu, Uniform NaYF4:Yb, Tm hexagonal submicroplates: controlled synthesis and enhanced UV and blue upconversion luminescence. Mater. Res. Bull. 48, 300–304 (2013)

    Article  Google Scholar 

  28. L. Wang, Y. Li, Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727–734 (2007)

    Article  Google Scholar 

  29. L. Tong, X. Li, R. Hua, X. Li, H. Zheng, J. Sun, J. Zhang, L. Cheng, B. Chen, Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF4:Yb3+/Er3+ nano-/micro-crystals derived from a microwave-assisted hydrothermal route. J. Lumin. 167, 386–390 (2015)

    Article  Google Scholar 

  30. F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004)

    Article  Google Scholar 

  31. Y. Wei, H. Yang, X. Li, L. Wang, H. Guo, Elaboration, structure, and intense upconversion in transparent KYb2F7:Ho3+ glass-ceramics. J. Am. Ceram. Soc. 97, 2012–2015 (2014)

    Article  Google Scholar 

  32. J.F. Suyver, J. Grimm, K.W. Krämer, H.U. Güdel, Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+, Yb3+. J. Lumin. 114, 53–59 (2005)

    Article  Google Scholar 

  33. W. Yu, W. Xu, H. Song, S. Zhang, Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase. Dalton Trans. 43, 6139–6147 (2014)

    Article  Google Scholar 

  34. S.F. León-Luis, U.R. Rodríguez-Mendoza, P. Haro-González, I.R. Martín, V. Lavín, Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sens. Actuators B Chem. 174, 176–186 (2012)

    Article  Google Scholar 

  35. M.A.R.C. Alencar, G.S. Maciel, C.B. de Araújo, A. Patra, Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl. Phys. Lett. 84, 4753–4755 (2004)

    Article  Google Scholar 

  36. D. Li, Q. Shao, Y. Dong, J. Jiang, Thermal sensitivity and stability of NaYF4:Yb3+, Er3+ upconversion nanowires, nanorods and nanoplates. Mater. Lett. 110, 233–236 (2013)

    Article  Google Scholar 

  37. X. Wang, X. Kong, Y. Yu, Y. Sun, H. Zhang, Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity. J. Phys. Chem. C 111, 15119–15124 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This project has been financially supported by Zhejiang Provincial Natural Science Foundation of China (LQ15E020004), the National Natural Science Foundation of China (61372025), the college students’ activities of science and technology innovation in Zhejiang Province (2015R407033) and the Science and Technology Project of Zhejiang Province (2015C37037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingye Ding or Daqin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Ding, M., Dai, J. et al. Comparison of upconversion luminescent properties and temperature sensing behaviors of β-NaYF4:Yb3+/Er3+ nano/microcrystals prepared by various synthetic methods. J Mater Sci: Mater Electron 27, 8254–8270 (2016). https://doi.org/10.1007/s10854-016-4832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4832-7

Keywords

Navigation