Advertisement

Influence of annealing treatment on phase transformation of Ga15Se77Tl8 thin films

  • Ravi P. Tripathi
  • M. Shaheer Akhtar
  • M. A. Alvi
  • Shamshad A. Khan
Article

Abstract

The present work describes the first order phase transformation in chalcogenide Ga15Se77Tl8 thin films. Simple melt quenching method was applied to prepare the bulk Ga15Se77Tl8 samples. Ga15Se77Tl8 thin films were prepared by the thermal evaporation on glass and silicon wafer substrates under the vacuum condition of 10−5 Torr. The amorphous and glassy nature of synthesized sample was verified by differential scanning calorimeter. The phase transformation was studied at different temperatures of 343, 358 and 373 K for 2 h. The crystalline, morphological and optical properties were analysed to explain the phase transformation in as grown and thermally annealed films at different temperatures. It was found that as grown film revealed the amorphous nature, while the annealed films possessed the polycrystalline nature. From optical properties, the values of extinction (k) and absorption (α) coefficient for Ga15Se77Tl8 thin films enhanced with the increase of the incident photon energy as well as annealed temperature. The decrease in the optical band gap with respect to annealed temperatures was described on the basis of phase transformation from amorphous to polycrystalline state.

Keywords

Phase Change Material Chalcogenide Glass Sb2S3 Annealed Film Phase Change Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are thankful to UGC, New Delhi, for providing financial assistance under the project Grant No. (UGC Project: 42-780/2013 SR).

References

  1. 1.
    J. Nishi, S. Morimolo, I. Ingawa, R. Lizuka, T. Yamashta, Recent advances and trends in chalcogenide glass fiber technology: a review. J. Non-Cryst. Solids 140, 199 (1992)CrossRefGoogle Scholar
  2. 2.
    M. Frumar, B. Frumarava, P. Nemec, T. Wagner, J. Jedelsky, M. Hrdlicka, Thin chalcogenide films prepared by pulsed laser deposition new amorphous materials applicable in optoelectronics and chemical sensors. J. Non-Cryst. Solids 3(52), 544 (2006)CrossRefGoogle Scholar
  3. 3.
    I. Grozdanov, C.K. Barlingay, S.K. Dey, M. Ristov, M. Najdoski, Experimental study of the copper thiosulfate system with respect to thin-film deposition. Thin Solid Films 250, 67 (1994)CrossRefGoogle Scholar
  4. 4.
    A. Thakur, G. Singh, G.S.S. Saini, N. Goyal, S.K. Tripathi, Optical properties of amorphous Ge20Se80 and Ag6 (Ge0.20Se0.80) 94 thin films. Opt. Mater. 30, 565 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Sedeek, A. Adam, M.R. Balboul, L.A. Wahab, N. Makram, Structural correlations in light irradiated Ge36Se64 amorphous films—radial distribution function study. Mater. Res. Bull. 43, 1355 (2008)CrossRefGoogle Scholar
  6. 6.
    N.A. Jemali, H.A. Kassim, V.R. Devi, K.N. Shrivastava, Ab inito calculation of vibrational frequency of GexSe1−x glass. J. Non-Cryst. Solids 354, 1744 (2008)CrossRefGoogle Scholar
  7. 7.
    W.C. Liu, G. Hoffman, W. Zhou, R.M. Reano, P. Boolchand, Slab waveguides and nanoscale patterning of pulsed laser-deposited Ge0.2Se0.8 chalcogenide films. Appl. Phys. Lett. 93, 041107 (2008)CrossRefGoogle Scholar
  8. 8.
    C. Massobrio, A. Pasquarello, Short and intermediate range order in amorphous GeSe2. Phys. Rev. B 77, 144207 (2008)CrossRefGoogle Scholar
  9. 9.
    S.R. Ovshinisky, H. Fritzsche, Amorphous semiconductors for switching memory and imaging application. IEEE Trans. Electron. Dev. 20, 91 (1973)CrossRefGoogle Scholar
  10. 10.
    T. Rajagopalan, G.B. Reddy, Study of surface topography and optical properties of Ge15Bi38Se47 films. J. Mater. Sci. Mater. Electron. 9, 133 (1998)CrossRefGoogle Scholar
  11. 11.
    J. Cofmenero, J.M. Barandiaran, Crystallization of Al23Te77 glasses. J. Non-Cryst. Solids 30, 263 (1979)CrossRefGoogle Scholar
  12. 12.
    J.A. Savage, Optical properties of chalcogenide glasses. J. Non-Cryst. Solids 47, 101 (1982)CrossRefGoogle Scholar
  13. 13.
    R.M. Mehra, G. Kaur, A. Pundir, P.C. Mathur, Study of Se–Te–Sb system for application to reversible optical data storage. J. Appl. Phys. 32, 128 (1993)CrossRefGoogle Scholar
  14. 14.
    I.B. Assaker, M. Gannouni, J.B. Naceur, M.A. Almessiere, A.L. Al-Otaibi, T. Ghrib, S. Shen, R. Chtourou, Electrodeposited ZnIn2S4 onto TiO2 thin films for semiconductor-sensitized photocatalytic and photoelectrochemical applications. Appl. Surf. Sci. 351, 927 (2015)CrossRefGoogle Scholar
  15. 15.
    S.R. Gosavi, C.P. Nikam, A.R. Shelke, A.M. Patil, S.-W. Ryu, J.S. Bhat, N.G. Deshpande, Chemical synthesis of porous web-structured CdS thin films for photosensor application. Mater. Chem. Phys. 160, 244 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Malligavathy, R.T. AnanthKumar, C. Das, S. Asokan, D. PathinettamPadiyan, Growth and characteristics of amorphous Sb2Se3 thin films of various thicknesses for memory switching applications. J. Non-Cryst. Solids 429, 93 (2015)CrossRefGoogle Scholar
  17. 17.
    Z. He, R. Liu, P. Wu, J. Zhai, T. Lai, S. Song, Z. Song, High speed and high reliability in Ge8Sb92/Ga30Sb70 stacked thin films for phase change memory applications. J. Alloys Compd. 653, 334 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Mushtaq, B. Ismail, M. Aurang Zeb, N.J. Suthan Kissinger, A. Zeb, Low-temperature synthesis and characterization of Sn-doped Sb2S3 thin film for solar cell applications. J. Alloys Compd. 632, 723 (2015)CrossRefGoogle Scholar
  19. 19.
    M.X. Zhuang, A.X. Wei, Y. Zhao, J. Liu, Z.Q. Yan, Z. Liu, Morphology-controlled growth of special nanostructure CuInS2 thin films on an FTO substrate and their application in thin film solar cells. Int. J. Hydrogen Energy 40, 806 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Purohit, S. Chander, S.P. Nehra, C. Lal, M.S. Dhaka, Effect of thickness on structural, optical, electrical and morphological properties of nanocrystalline CdSe thin films for optoelectronic applications. Opt. Mater. 47, 345 (2015)CrossRefGoogle Scholar
  21. 21.
    C.C. Chang, T.K. Chen, W.C. Lee, P.H. Lin, M.J. Wang, Y.C. Wen, P.M. Wu, M.K. Wu, Superconductivity in Fe-chalcogenides. Phys. C 514, 423 (2015)CrossRefGoogle Scholar
  22. 22.
    P. Lucas, G.J. Coleman, S. Jiang, T. Luo, Z. Yang, Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. Opt. Mater. 47, 530 (2015)CrossRefGoogle Scholar
  23. 23.
    A.A. Al-Agel, E.A. Al-Arfaj, F.M. Al-Marzouki, S.A. Khan, A.A. Al-Ghamdi, Study of phase separation in Ga25Se75−xTex chalcogenide thin film. Prog. Nat. Sci. Mater. Int. 23(2), 139 (2013)CrossRefGoogle Scholar
  24. 24.
    M.I. Abd-Elrahman, A.Y. Abdel-Latief, R.M. Khafagy, N. Younis, M.M. Hafiz, Thermal annealing effect on the optical properties of Ag10As30S60 thin film. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 13, 29 (2015)CrossRefGoogle Scholar
  25. 25.
    Z.A. Motlagh, M.E.A. Araghi, Effect of annealing temperature on optical and electrical properties of lead sulfide thin films. Mater. Sci. Semicond. Process. 40, 701 (2015)CrossRefGoogle Scholar
  26. 26.
    A.Y. Abdel-Latif, H. Mahfoz Kotb, M.M. Hafiz, M.A. Dabban, Influence of heat treatment on the structural, optical and electrical properties of Cd20Sn10Se70 thin films. Mater. Sci. Semicond. Process. 30, 502 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Suriakarthick, V.N. Kumar, T.S. Shyju, R. Gopalakrishnan, Effect of substrate temperature on copper antimony sulphide thin films from thermal evaporation. J. Alloys Compd. 651, 423 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Vora-ud, M. Horprathum, P. Eiamchai, P. Muthitamongkol, B. Chayasombat, C. Thanachayanont, A. Pankiew, A. Klamchuen, D. Naenkieng, T. Plirdpring, A. Harnwunggmoung, A. Charoenphakdee, W. Somkhunthot, T. Seetawan, Thermoelectric properties of c-GeSb0.75Te0.5–h-GeSbTe0.5 thin films through annealing treatment effects. J. Alloys Compd. 649, 380 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Aousgi, W. Dimassi, B. Bessais, M. Kanzari, Effect of substrate temperature on the structural, morphological, and optical properties of Sb2S3 thin films. Appl. Surf. Sci. 350, 19 (2015)CrossRefGoogle Scholar
  30. 30.
    S.J. Patil, C.D. Lokhande, Fabrication and performance evaluation of rare earth lanthanum sulfide film for supercapacitor application: effect of air annealing. Mater. Des. 87, 939 (2015)Google Scholar
  31. 31.
    J.-Y. Cho, D. Kim, Y.-J. Park, T.-Y. Yang, Y.-Y. Lee, Y.-C. Joo, The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics. Acta Mater. 94, 143 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Zallen, Physics of Amorphous Solids (Wiley, New York, 1983)CrossRefGoogle Scholar
  33. 33.
    A.S. Maan, D.R. Goyal, S.K. Sharma, T.P. Sharma, Optical absorption properties of amorphous Ga40SexTe60−x alloys. J. Non-Cryst. Solids 183, 186 (1995)CrossRefGoogle Scholar
  34. 34.
    A. Segura, A. Chevy, T.P. Gueodon, J.M. Besson, Photovoltaic efficiency of InSe solar cells. Solar Energy Mater. 2, 159 (1979)CrossRefGoogle Scholar
  35. 35.
    G. Pfister, Electronic properties of chalcogenide glasses and their use in xerography. J. Electron. Mater. 8, 789 (1979)CrossRefGoogle Scholar
  36. 36.
    Y. Shpotyuk, C. Boussard-Pledel, V. Nazabal, R. Chahal, J. Ari, B. Pavlyk, J. Cebulski, J.L. Doualan, B. Bureau, Ga-modified As2Se3–Te glasses for active applications in IR photonics. Opt. Mater. 46, 228 (2015)CrossRefGoogle Scholar
  37. 37.
    K. Wei, L. Beauchemin, H. Wang, W.D. Porter, J. Martin, G.S. Nolas, Enhanced thermoelectric properties of Cu2ZnSnSe4 with Ga-doping. J. Alloys Compd. 650, 844 (2015)CrossRefGoogle Scholar
  38. 38.
    U. Berner, M. Widenmeyer, P. Engler, Phillip J. Da, 4-Amino-1,2,4-triazole: playing a key role in the chemical diposition of Cu–In–Ga metal layers for photovoltaic application. Thin Solid Films 582, 39 (2015)CrossRefGoogle Scholar
  39. 39.
    C. Cheng, X. Wang, X. Tiefeng, L. Sun, Q. Zhu, Z. Pan, Q. Nie, P. Zhang, W. Yuehao, S. Dai, X. Shen, X. Zhang, Novel NaI improved Ge–Ga–Te far-infrared chalcogenide glasses. Infrared Phys. Technol. 72, 148 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Ruck, F. Locherer, Reprint of “Coordination chemistry of homoatomic ligands of bismuth selenium and tellurium”. Coord. Chem. Rev. 297–298, 208 (2015)CrossRefGoogle Scholar
  41. 41.
    A. Earnshaw, N. Greenwood, 7-Aluminium, Gallium, Indium and Thallium, Chemistry of the Elements, 2nd edn. (Elsevier Ltd., 1997), pp. 216–267Google Scholar
  42. 42.
    A.A. El-Seebaii, S.A. Khan, F.M. Al-Marzouki, A.S. Faidah, A.A. Al-Ghamdi, Role of heat treatment on structural and optical properties of thermally evaporated Ga10Se81Pb9 chalcogenide thin films. J. Lumin. 132(8), 2082 (2012)CrossRefGoogle Scholar
  43. 43.
    A.A. Al-Ghamdi, S.A. Khan, S. Al-Heniti, F.A. Al-Agel, T. Al-Harbi, M. Zulfequer, Effects of laser irradiation on optical properties of amorphous and annealed Ga15Se81In4 and Ga15Se79In6 chalcogenide thin film. J. Alloys Compd. 505(1), 229 (2010)CrossRefGoogle Scholar
  44. 44.
    M.A. Alvi, S.A. Khan, A.A. Al-Ghamdi, Photo-induced effects on electrical properties of Ga15Se81Ag4 chalcogenide thin film. J. Lumin. 132(5), 1237 (2012)CrossRefGoogle Scholar
  45. 45.
    S.A. Khan, J.K. Lal, A.A. Al-Ghamdi, Thermal annealing effect on optical constants of vacuum evaporated Se75S25−xCdx chalcogenide thin films. Opt. Laser Technol. 42(5), 839 (2010)CrossRefGoogle Scholar
  46. 46.
    N.F. Mott, E.A. Davis, Electronic Process in Non-crystalline Materials (Clarendon Press, Oxford, 1971)Google Scholar
  47. 47.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  48. 48.
    G. Saffarini, J.M. Saiter, H. Schmitt, The composition dependence of the optical band gap in Ge–Se–In thin film. Opt. Mater. 29, 1143 (2007)CrossRefGoogle Scholar
  49. 49.
    M.M.A. Imran, Optical band gap and optical constants of a Se100−xSnx thin film. J. Optoelectron. Adv. Mater. Rapid Commun. 14, 176 (2007)Google Scholar
  50. 50.
    G.A. Amin, S.M. El-Sayed, H.M. Saad, F.M. Hafez, M. Abd-el-Rahman, The radiation effect on optical and morphological properties of Ag–As–Te thin film. Radiat. Meas. 42, 400 (2007)CrossRefGoogle Scholar
  51. 51.
    M.R. Balboul, Optical effects induced by gamma and UV irradiation in chalcogenide glass. Radiat. Meas. 43, 1360 (2008)CrossRefGoogle Scholar
  52. 52.
    A.A. Al-Ghamdi, S.A. Khan, S. Al-Heniti, F.A. Al-Agel, M. Zulfequer, Anneling and laser irradiation effects on optical constants of Ga15Se85 and Ga15Se83In2 chalcogenide thin films. Curr. Appl. Phys. 11, 315 (2011)CrossRefGoogle Scholar
  53. 53.
    M.L. Theye, in Proceedings of the 5th International Conference on Amorphous and Liquid Semiconductors, vol. 1, Garmisch Partenkirchen, 1973, ed. by J. Stuke, W. Brenig, p. 479Google Scholar
  54. 54.
    S. Hasegawa, S. Yazalci, T. Shimiza, Effects of annealing on gap states in amorphous Si films. Solid State Commun. 26, 407 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsSt. Andrew’s CollegeGorakhpurIndia
  2. 2.New and Renewable Energy Materials Development Center (New REC)Chonbuk National UniversityJeonbukRepublic of Korea
  3. 3.Department of PhysicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations