Application of ultra-thin CdS film as buffer layer in non-doped blue organic light-emitting diodes

  • Xi Chang
  • Wenlong Jiang
  • Guiying Ding
  • Jin Wang
  • Gang Zhang
  • Guangxin Yao


The device inserted 0.5 nm thick cadmium sulfide (CdS) as buffer layer, prepared by vacuum thermal evaporation method, has been studied on the non-doped blue organic light-emitting diode. Compared to the device without ultra-thin CdS film, the maximum luminance of the device with ultra-thin CdS film was 11,370 cd/m2 at 11 V, and the maximum current efficiency reached 3.10 cd/A, increased 1.5 times and 1.2 times, respectively. In the optimized devices with the structure of ITO/MoO3 (10 nm)/TPABBI (35 nm)/Bphen (40 nm)/CdS (0, 0.1, 0.3 and 0.5 nm)/LiF (0.5 nm)/Al (100 nm), the effects of CdS layer on the photoelectric performance of the devices were investigated in detail. When the CdS thickness was 0.3 nm, the maximum luminance was 13,590 cd/m2 at 9 V and the turn on voltage was only 3 V. The maximum current efficiency of 3.42 cd/A was obtained. It is indicated that the simple structure of the device with inserted ultra-thin CdS film, cheap and stable inorganic photoelectric material, may be a promising way to fabricate hybrid organic–inorganic LEDs with high performances.


Lower Unoccupied Molecular Orbital Lower Unoccupied Molecular Orbital External Quantum Efficiency Maximum Luminance Electron Transport Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks are due to Dr. Ouyang for assistance with emitting materials. This work is supported by the science and technology development program of Jilin province (20100510, 20101512, 201215221), the “Twelfth five-year” science and technology research project of Jilin province department of education (2011321, 2012175, 2013208), the ordinary university graduate student research innovation project of Jiangsu province (CXLX11_0568).


  1. 1.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)CrossRefGoogle Scholar
  2. 2.
    F. Wei, L. Fang, J. Mater. Sci.: Mater. Electron. 19, 1202 (2008)Google Scholar
  3. 3.
    G. Zhang, X. Tian, L. Zhao, J. Wang et al., Mater. Sci. Mater. Electron. 26, 1004 (2015)CrossRefGoogle Scholar
  4. 4.
    J.K. Jha, R. Santos-Ortiz, J. Du, N.D. Shephed, J. Mater. Sci.: Mater. Electron. 25, 1492 (2014)Google Scholar
  5. 5.
    G. Ding, W. Jiang, J. Wang, J. Wang et al., Semicond. Sci. Technol. 24, 25016 (2009)CrossRefGoogle Scholar
  6. 6.
    J.T. Cho, D.H. Kim, E.L. Koh et al., Thin Solid Films 570, 63 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Yang, Y. Duan, Y. Yang et al., J. Lumi. 166, 77 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Chen, L.P. Wang, W.Y. Tao et al., ACS Appl. Mater. Interfaces 7, 2972 (2015)CrossRefGoogle Scholar
  9. 9.
    K.A. Knauer, E. Najafabadi, W. Haske, M.P. Gaj, K.C. Davis et al., Org. Electron. 14, 2418 (2013)CrossRefGoogle Scholar
  10. 10.
    C. Adachi, M.A. Baldo, M.E. Thompon, S.R. Forrest, Appl. Phys. 90, 5048 (2001)CrossRefGoogle Scholar
  11. 11.
    B.H. Wallikewitz, D. Kabra, S. Gelinas, R.H. Friend, Phys. Rev. B 85, 045209 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature 459, 234 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Sun, N.C. Giebink, H. Kanno, B. Ma, M.E. Thompson, S.R. Forrest, Nature 440, 908 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Tao, Y. Zhou, C.S. Lee, X. Zhang, S.T. Lee, Chem. Mater. 22, 2138 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Luo, Y. Zhou, Z.Q. Niu, Q.F. Zhou, Y. Ma, J. Pei, J. Am. Chem. Soc. 129, 11314 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Ye, C.J. Zheng, X.M. Ou, X.H. Zhang, M.K. Fung, C.S. Lee, Adv. Mater. 24, 3410 (2012)CrossRefGoogle Scholar
  17. 17.
    M.A. Baldo, D.F. O’Brien, M.E. Thompson, S.R. Forrest, Phys. Rev. B 60, 14422 (1999)CrossRefGoogle Scholar
  18. 18.
    M. Vasilopoulou, S. Kennou, S. Ladas, S.N. Georga, M. Botzakaki, D. Skarlatos, C.A. Krontrias, N.A. Stathopoulos, P. Argitis, L.C. Palilis, Org. Electron. 14, 312 (2013)CrossRefGoogle Scholar
  19. 19.
    N. Tamoto, C. Adachi, K. Nagai, Chem. Mater. 9, 1077 (1997)CrossRefGoogle Scholar
  20. 20.
    X.K. Liu, C.J. Zheng, M.F. Lo, J. Xiao, C.S. Lee, M.K. Fung, X.H. Zhang, Chem. Commun. 50, 2027 (2014)CrossRefGoogle Scholar
  21. 21.
    W.Y. Hung, L.C. Chi, W.J. Chen et al., J. Mater. Chem. 20, 10113 (2010)CrossRefGoogle Scholar
  22. 22.
    W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng et al., Adv. Funct. Mater. 22, 2797 (2012)CrossRefGoogle Scholar
  23. 23.
    X. Ouyang, X. Zhang, Z. Ge, Dyes Pigments 103, 39 (2014)CrossRefGoogle Scholar
  24. 24.
    D.W. Zhao, Z. Xu, F.J. Zhang, S.F. Song, S.L. Zhao et al., Appl. Surf. Sci. 253, 4025–4028 (2007)CrossRefGoogle Scholar
  25. 25.
    G.Y. Zhong, J. He, S.T. Zhang, Z. Xu, Appl. Phys. Lett. 80, 4846–4848 (2002)CrossRefGoogle Scholar
  26. 26.
    Q. Huang, G. Evmenenko, P. Dutta, T.J. Marks, J. Am. Chem. Soc. 125, 14704 (2003)CrossRefGoogle Scholar
  27. 27.
    L.S. Huang, C.W. Tang, M.G. Mason, Appl. Phys. Lett. 70, 152 (1997)CrossRefGoogle Scholar
  28. 28.
    G. Zhang, H. Gao, L. Zhao, Y. Gao, Z. Kang, X. Tian et al., Mater. Sci. Mater. Electron. 26, 6506 (2015)CrossRefGoogle Scholar
  29. 29.
    M.Y. Chan, S.L. Lai, M.K. Fung, C.S. Lee, S.T. Lee, Appl. Phys. 95, 5397 (2004)CrossRefGoogle Scholar
  30. 30.
    S. Shi, D. Ma, Appl. Surf. Sci. 252, 6337 (2006)CrossRefGoogle Scholar
  31. 31.
    R. Grover, R. Srivastava, O. Rana, A.K. Srivastava, K.K. Maurya, K.N. Soof, D.S. Mehta, M.N. Kamalasanan, J. Lumin. 132, 330 (2012)CrossRefGoogle Scholar
  32. 32.
    V. Kumar, D.K. Sharma, M.K. Bansal, D.K. Dwviedi, Sci. Sinter. 43, 335 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xi Chang
    • 1
    • 2
  • Wenlong Jiang
    • 2
  • Guiying Ding
    • 2
  • Jin Wang
    • 2
  • Gang Zhang
    • 2
  • Guangxin Yao
    • 1
  1. 1.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Information TechnologyJilin Normal UniversitySipingChina

Personalised recommendations