Skip to main content
Log in

Scaling behavior of dynamic hysteresis in Bi3.15Nd0.85Ti3O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The scaling behavior of dynamic hysteresis was investigated in Bi3.15Nd0.85Ti3O12 bulk ceramics at a frequency of 1–1000 Hz and an external electric field amplitude of 79–221 kV/cm. The scaling behavior at low amplitude (E 0 ≤ 114 kV/cm) takes the form of \(\langle A \rangle \propto f^{ - 0.013} E_{0}^{0.7}\) for low frequency (f ≤ 200 Hz) and \(\langle A \rangle \propto f^{ - 0.013} E_{0}^{0.22}\) for high frequency (f > 200 Hz), where \(\langle A \rangle\) is the area of hysteresis loop and f and E 0 are frequency and amplitude of external electric field, respectively. At high amplitude (E 0 > 114 kV/cm), we obtain \(\langle A \rangle \propto f^{0.011} E_{0}^{1.163}\) at low frequency and \(\langle A \rangle \propto f^{ - 0.015} E_{0}^{0.7}\) at high frequency. At low E 0, the contribution to the scaling relation mainly results from reversible domain switching, while at high E 0 reversible and irreversible domain switching concurrently contribute to the scaling relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. U. Chon, H.M. Jang, M.G. Kim, C.H. Chang, Phys. Rev. Lett. 89, 087601 (2002)

    Article  Google Scholar 

  2. J.M. Liu, H.P. Li, C.K. Ong, L.C. Lim, J. Appl. Phys. 86, 5198 (1999)

    Article  Google Scholar 

  3. M. Rao, H.R. Krishnamurthy, R. Pandit, Phys. Rev. B 42, 856 (1990)

    Article  Google Scholar 

  4. M. Rao, R. Pandit, Phys. Rev. B 43, 3373 (1991)

    Article  Google Scholar 

  5. R. Yimnirun, Y. Laosiritaworn, S. Wongsaenmai, S. Ananta, Appl. Phys. Lett. 89(16), 2901 (2006)

    Article  Google Scholar 

  6. J.M. Liu, B. Pan, H. Yu, S.T. Zhang, J. Phys. Condens. Matter 16, 1189 (2004)

    Article  Google Scholar 

  7. Y.C. Zhang, C.J. Lu, Z.Z. Yang, W.N. Ye, L.H. Xia, J. Appl. Phys. 111, 084104 (2012)

    Article  Google Scholar 

  8. J.M. Liu, H.L. Chan, C.L. Choy, C.K. Ong, Phys. Rev. B 65, 014416 (2001)

    Article  Google Scholar 

  9. J.M. Liu, H.L. Chan, C.L. Choy, Y.Y. Zhu, S.N. Zhu, Z.G. Liu, N.B. Ming, Appl. Phys. Lett. 79, 236 (2001)

    Article  Google Scholar 

  10. J.M. Liu, H.L. Chan, C.L. Choy, Mater. Lett. 52, 213 (2002)

    Article  Google Scholar 

  11. J.M. Liu, Q. Xiao, Z.G. Liu, H.L.W. Chan, N.B. Ming, Mater. Chem. Phys. 82, 733 (2003)

    Article  Google Scholar 

  12. Y.J. Qi, X. Xiao, C.J. Lu, X.Y. Mao, X.B. Chen, J. Appl. Phys. 98(9), 4101 (2005)

    Article  Google Scholar 

  13. G. Du, R. Liang, L. Wang, K. Li, W. Zhang, G. Wang, X. Dong, Appl. Phys. Lett. 102, 142903 (2013)

    Article  Google Scholar 

  14. M.H. Lente, A. Picinin, J.P. Rino, J.A. Eiras, J. Appl. Phys. 95, 2646 (2004)

    Article  Google Scholar 

  15. D. Bolten, U. Böttger, R. Waser, J. Eur. Ceram. Soc. 24, 725 (2004)

    Article  Google Scholar 

  16. D. Bolten, U. Böttger, R. Waser, J. Appl. Phys. 93, 1735 (2003)

    Article  Google Scholar 

  17. J.M. Liu, L.C. Yu, G.L. Yuan, Y. Yang, H.L.W. Chan, Z.G. Liu, Microelectron. Eng. 66, 798 (2003)

    Article  Google Scholar 

  18. J.M. Liu, B. Pan, K.F. Wang, H. Yu, Ceram. Int. 30, 1471 (2004)

    Article  Google Scholar 

  19. H. Zhu, S. Dong, J.M. Liu, Phys. Rev. B 70, 132403 (2004)

    Article  Google Scholar 

  20. M.W. Chu, S.K. Lee, D. Hesse, U. Gosele, Appl. Phys. Lett. 85, 2029 (2004)

    Article  Google Scholar 

  21. S. Trolier-McKinstry, N.B. Gharb, D. Damjanovic, Appl. Phys. Lett. 88, 202901 (2006)

    Article  Google Scholar 

  22. N. Uchida, T. Ikeda, Jpn. J. Appl. Phys. 4, 867 (1965)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (11204069, 51472078 and 11574073), and the Science Foundation of the Education Bureau of Hubei Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Qi or Tianjin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Mei, Z., Yang, C. et al. Scaling behavior of dynamic hysteresis in Bi3.15Nd0.85Ti3O12 ceramics. J Mater Sci: Mater Electron 27, 7755–7759 (2016). https://doi.org/10.1007/s10854-016-4763-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4763-3

Keywords

Navigation