Studies on nanostructured V2O5/V/V2O5 films for un-cooled IR detector application

  • P. Deepak Raj
  • Sudha Gupta
  • M. Sridharan


Sensitive micro-bolometer devices require a sensor layer of high temperature coefficient of resistance (TCR) value with low resistance to reduce noise. Since it is difficult to produce vanadium pentoxide (V2O5) with high TCR and low resistance values, a sandwich type architecture approach was chosen, in which V2O5/V/V2O5 structure was formed using reactive direct current magnetron sputtering technique by varying the argon (Ar) and oxygen (O2) ratio. On increasing the O2 partial pressure, an increase in the crystallinity of the V2O5 film was observed using X-ray diffraction (XRD) studies, which was due to the availability of abundant oxygen to form V2O5. X-ray photoelectron spectroscopy (XPS) result of V2O5/V/V2O5 indicated a decrease in V2p peak and increase in O1s peak, confirmed the multilayer had mixed vanadium oxide phases of V3+ and V2+ oxides of vanadium due to the diffusion of oxygen from top and bottom V2O5 layer into the V metal layer. V2O5/V/V2O5 multilayer films at the higher O2 ratio had TCR value −2.5 %/°C with a resistivity of 19 Ω/cm−1, which is compatible for un-cooled IR detector application.


Vanadium V2O5 Oxygen Partial Pressure Sheet Resistance Multilayer Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors MS sincerely thank Defence Research & Development Organization (DRDO), Government of India for the financial support (0903809/M/01/1384). Authors sincerely thank SASTRA University for necessary infrastructural facilities.


  1. 1.
    C.W. Park, S. Moon, H.B. Chung, J. Korea Phys. Soc. 39, 138 (2001)Google Scholar
  2. 2.
    Y.H. Han, I.H. Choi, H.K. Kang, J.Y. Park, K.T. Kim, H.J. Shin, S. Moon, Thin Solid Films 425, 260 (2003)CrossRefGoogle Scholar
  3. 3.
    Y. Ju, Z. Wu, S. Li, L. Li, Y. Jiang, J. Mater. Sci: Mater. Electron 23, 1188 (2012)Google Scholar
  4. 4.
    Z. Liu, Y. Ju, Z. Wu, S. Li, Y. Jiang, J. Mater. Sci: Mater. Electron. 24, 1292 (2013)Google Scholar
  5. 5.
    J. Huotari, R. Bjorklund, J. Lappalainen, A.L. Spetz, Proc. Eng. 87, 1035 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Pranav Shashidhar, P. Dhivya, P. Deepak Raj, M. Sridharan, Mater. Today Proc. (2016, accepted)Google Scholar
  7. 7.
    K. Jeyalakshmi, S. Vijayakumar, K.K. Purushothaman, G. Muralidharan, Mater. Res. Bull. 48(7), 2578 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Mousavi, A. Kompany, N. Shahtahmasebi, M.M. Bagheri-Mohagheghi, Adv. Manuf. 1, 320 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Abbasi, S.M. Rozati, R. Irani, S. Beke, Mater. Sci. Semicond. Proc. 29, 132 (2015)CrossRefGoogle Scholar
  10. 10.
    R.T. Rajendra Kumar, B. Karunagaran, S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, R. Kesavamoorthy, Mater. Lett. 57, 3820 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Raja, G. Subramani, D. Bheeman, R. Ramamani, C. Bellan, Optik 127(1), 461 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Beke, S. Giorgio, L. Korosi, L. Nanai, W. Marine, Thin Solid Films 516, 4659 (2008)CrossRefGoogle Scholar
  13. 13.
    M.I. Kang, I.K. Kim, E.J. Oh, S.W. Kim, J.W. Ryu, H.Y. Park, Thin Solid Films 520, 2368 (2012)CrossRefGoogle Scholar
  14. 14.
    X. Yang, C. Cai, S. Zhou, H. Liu, W. Liu, Chin. Opt. Lett. 8, 137 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Benmoussa, E. Ibnouelghazi, A. Benmoussa, E.L. Ameziane, Thin Solid Films 265, 22 (1995)CrossRefGoogle Scholar
  16. 16.
    P. Deepak Raj, S. Gupta, M. Sridharan, Mater. Sci. Semicond. Proc. 39, 429 (2015)CrossRefGoogle Scholar
  17. 17.
    A.A. Akl, Appl. Surf. Sci. 253, 7094 (2007)CrossRefGoogle Scholar
  18. 18.
    Q. Su, W. Lan, Y.Y. Wang, X.Q. Lin, Appl. Surf. Sci. 255, 4177 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Cui, D. Da, W. Jiang, Appl. Surf. Sci. 133, 225 (1998)CrossRefGoogle Scholar
  20. 20.
    X.J. Wang, H.D. Li, Y.J. Fei, X. Wang, Y.Y. Xiong, Y.X. Nie, K.A. Feng, Appl. Surf. Sci. 177, 8 (2001)CrossRefGoogle Scholar
  21. 21.
    C.V. Ramana, O.M. Hussain, B. Srinivasalu Naidu, P.J. Reddy, Thin Solid Films 305, 219 (1997)CrossRefGoogle Scholar
  22. 22.
    W. Yu, J. Wang, Z. Gou, W. Zeng, W. Guo, L. Lin, Ceram. Int. 39(3), 2639 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Abdel Rahman, S. llahi, M.F. Zia, M. Alduraibi, N. Yacoubi, B. Illai, Infrared Phys. Technol. 71, 127 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Deepak Raj, S. Gupta, M. Sridharan, AIP Conf. Proc. 1665, 080007 (2015)Google Scholar
  25. 25.
    G. Carter, Vacuum 56, 87 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Functional Nanomaterials & Devices Lab, Centre for Nanotechnology & Advanced Biomaterials and School of Electrical & Electronics EngineeringSASTRA UniversityThanjavurIndia
  2. 2.Solid State Physics LaboratoryNew DelhiIndia

Personalised recommendations