Advertisement

Structure and microwave absorption properties of Nd–Co–Ni alloys

  • Ziqiang Qiao
  • Shunkang Pan
  • Jilei Xiong
  • Lichun Cheng
  • Qingrong Yao
Article
  • 186 Downloads

Abstract

To study the effect of Ni content on microwave absorption of Nd2Co17 alloy. The Nd2Co17−x Ni x (X = 0.0, 0.2, 0.6, 1.0, 1.4) powders were prepared by arc smelting and high energy ball milling method. The structure and morphology of the powder were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electromagnetic parameters of the powder were measured by vector network analyzer (VNA) at room temperature. The XRD results indicate that the prepared powder maintain the Nd2Co17 phase. The minimum reflectivity value frequency shifts towards the lower frequency with the increase of Ni content. The minimum reflectivity value of Nd2Co15.6Ni1.4 alloy reaches about −26.6 dB at 2.9 GHz with the matching thickness of 2.2 mm. And the milled powder was tempered ranging of 50–200 °C for 1 h. The minimum reflectivity frequency shifts to higher frequency region compared to the powder without heat treatment. The absorbing frequency bandwidth increases with the tempering treatment increase.

Keywords

Lower Frequency Region Minimum Reflectivity Microwave Absorption Property Electromagnetic Parameter Relative Complex Permittivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51361007), Guangxi Natural Science Foundation (2014 GXNSFAA118317, 2013 GXNSFAA019295), Scientific Research Project of Guangxi Education Department (YB 2014139), Innovation project of GUET Graduate Education (YJCXS 201566) and Guangxi Key Laboratory of Information Materials (131010-Z).

References

  1. 1.
    A.B. Zhang, M. Tang, X.F. Cao, Z.B. Lu, S.Y. Tao, The effect of polyethylenimine on the microwave absorbing properties of a hybrid microwave absorber of Fe3O4/MWNTs. J. Mater. Sci. 49, 4629–4635 (2014)CrossRefGoogle Scholar
  2. 2.
    F. Jiang, J. Zheng, L. Lu, M. Zhang, Y. Wang, Microwave absorbing properties of La0.1Ca0.9MnO3 porous microsphere synthesized by method of precipitation. J. Mater. Sci.: Mater. Electron. 26, 2243–2247 (2015)Google Scholar
  3. 3.
    S.H. Liu, J.M. Liu, X.L. Dong. Electromagnetic Shielding and Absorbing Material (Chemical Industry Press, 2007), pp. 42–96Google Scholar
  4. 4.
    J. Zhang, L.X. Wang, Q.T. Zhang, A composite material based on BaZn2Fe16O27 ferrite and antimony-doped tin oxide composite with excellent microwave absorbing property and 1.06 & #x03BC;m reflection performance. J. Mater. Sci.: Mater. Electron. 26, 6218–6223 (2015)Google Scholar
  5. 5.
    Y.C. Zheng, S.J. Wang, J.M. Feng, C.L. Li, Z.Y. Ouyang, J.Z. Liu, X.B. Li, Regulation mechanism of EM parameters in natural ferrite and its application in microwave absorbing materials. J. Sci. China Ser. E 49(1), 38–49 (2006)CrossRefGoogle Scholar
  6. 6.
    Q. Kang, New Microwave Absorbing Material (Science Press Beijing, 2006), pp. 146–208Google Scholar
  7. 7.
    H.Y. Wang, D.M. Zhu, W.C. Zhou, F. Luo, Synthesis and microwave absorbing properties of Ni–Cu ferrite/MWCNTs composites. J. Mater. Sci.: Mater. Electron. 26, 7698–7704 (2015)Google Scholar
  8. 8.
    M. Itoh, K. Nishiyama, F. Shogano, T. Murot, K. Yamamoto, M. Sasad, K. Machida, Recycle of rare earth sintered magnet powder scraps as electromagnetic wave absorbers in gigahertz range. J. Alloy. Compound. 451, 507–509 (2008)CrossRefGoogle Scholar
  9. 9.
    K.S.V.L. Narasimhan, W.E. Wallace, Magnetic anisotropy of substituted R2Co17 compound (R = Nd, Sm, Er and Yb). J. Magn. 13(5), 1333–1335 (1977)CrossRefGoogle Scholar
  10. 10.
    J.M. Lu, Structure and Magnetic Properties of FeCoNd Nano-Magnetic Thin Films. D (Lanzhou University, Lanzhou, 2010). pp. 1–49Google Scholar
  11. 11.
    Q.F. Li, Z.K. Feng, S.Q. Yan, Y. Nie, X. Wang, Comparison of the magnetic and absorption properties of flaky super sendust and sendust alloys. J. Electoron. Mater. 44, 3777–3781 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Neishan, Applied Magnetism (Tianjin Science and Technology Press, Tianjin, 1983), pp. 6–231Google Scholar
  13. 13.
    Z.Y. Li, W.Y. Zhao, D.P. Nie, H. He, J.R. Geng, T. Xue, Effect of TiN content on Co base alloy microstructure and properties of laser cladding layer. J. Laser Particle Beams. 22(7), 1657–1660 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Sun, J. Zheng, L. Liang, K. Sun, Y. Yang, S.S. Zhao, Effect of Zn substitution on the electromagnetic and microwave absorbing properties of BaCo2 hexaferrite. J. Mater. Sci.: Mater. Electron. 26, 9970–9976 (2015)Google Scholar
  15. 15.
    Y.K. Sun, Metallic Soft Magnetic Materials and Its Application, vol 24 (Metallurgical Industry Press, China, 1986), pp. 6–59Google Scholar
  16. 16.
    J.S. Pan, J.M. Tong, M.B. Tian, Materials Science and Engineering (Tsinghua University Press, 2011), pp. 3–125Google Scholar
  17. 17.
    F.H. Cocks, A lattice parameter method for the investigation of solid state precipitation. J. Mater. Sci. 7, 771–780 (1972)CrossRefGoogle Scholar
  18. 18.
    K. Yanagimoto, K. Majima, S. Sunada, Effect of powder compositions on GHz microwave absorption of EM absorbing sheets. J. Jpn. Soc. Powder Metall. 51(4), 293–296 (2004)CrossRefGoogle Scholar
  19. 19.
    S.B. Liao, Ferromagnetic (PartII) (Science Press Beijing, 1988), pp. 3–88Google Scholar
  20. 20.
    C.L. Platt, M.K. Minor, T.J. Klemmer, Magnetic and structural properties of FeCoB thin films. J. IEEE Trans. Magn. 37, 2302–2304 (2001)CrossRefGoogle Scholar
  21. 21.
    E. Michielssen, J.M. Sajer, S. Ranjithan, R. Mittra, Design of lightweight, broadband microwave absorbers using genetic algorithms. J. IEEE Trans. Microw. Theor. Tech. 41, 1024–1031 (1993)CrossRefGoogle Scholar
  22. 22.
    L.X. Lian, L.J. Deng, M. Han, S.D. Feng, Effect of Nd content on natural resonance frequency and microwave permeability of Nd2Fe14B/α-Fe nanocomposites in 26.5–40 GHz frequency range. J. Alloy. Compound. 441, 301–304 (2007)CrossRefGoogle Scholar
  23. 23.
    J.L. Xiong, S.K. Pan, L.C. Cheng, X. Liu, P.H. Lin, Structure and microwave absorption properties of Pr–Fe–Ni alloys. J. Magn. Magn. Mater. 384, 106–112 (2015)CrossRefGoogle Scholar
  24. 24.
    A.G. Briggs, J. IEEE Trans. Microw. Theor. 20(5), 1628–1629 (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ziqiang Qiao
    • 1
  • Shunkang Pan
    • 1
  • Jilei Xiong
    • 3
  • Lichun Cheng
    • 1
    • 2
  • Qingrong Yao
    • 1
    • 2
  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.School of Materials and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Chinalco Guangxi Non Ferrous Jinyuan Rare Earth CO., LTDHezhouPeople’s Republic of China

Personalised recommendations