Enhancing supercapacitive performance of polyaniline by interfacial copolymerization with melamine

  • Hossein Mahdavi
  • Peyman Khodaei Kahriz
  • Habib Gholipour Ranjbar
  • Taieb Shahalizade


Polyaniline is a promising pseudo-capacitive material due to its low cost, ease of synthesis and high theoretical capacitance. However its application in commercial supercapacitors due to low cyclic stability was hindered. In order to overcome this deficiency in a facial one step approach, aniline–melamine copolymer (AMC) synthesized through interfacial copolymerization method at two different conditions. Electrochemical characterizations of the products proved that copolymerization of polyaniline with melamine led to a considerable improvement in supercapacitive performance (specific capacitance of 720 F g−1 at 5 mV s−1 and 83 % capacitance retention after 1500 cycles) compared with pure PANI nanofibers obtained from the interfacial polymerization (specific capacitance value of 440 F g−1 at 5 mV s−1 and 30 % capacitance retention after 1250 cycles). Also, copolymer samples with higher melamine content showed better supercapacitive performance (AMC-1 vs. AMC-2).


PANI Cyclic Voltammetry Specific Capacitance Melamine Cyclic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Sivaraman, S.K. Rath, V.R. Hande, A.P. Thakur, M. Patri, A.B. Samui, Synth. Met. 156, 1057 (2006)CrossRefGoogle Scholar
  2. 2.
    W. Yang, Z. Gao, N. Song, Y. Zhang, Y. Yang, J. Wang, J. Power Sources 272, 915 (2014)CrossRefGoogle Scholar
  3. 3.
    G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2, 213 (2013)CrossRefGoogle Scholar
  4. 4.
    Z. Gao, W. Yang, J. Wang, H. Yan, Y. Yao, J. Ma, B. Wang, M. Zhang, L. Liu, Electrochim. Acta 91, 185 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, X. Jing, J. Phys. Chem. B 112, 1157 (2008)CrossRefGoogle Scholar
  6. 6.
    H.J. Ding, M.X. Wan, Y. Wei, Adv. Mater. 19, 465 (2007)CrossRefGoogle Scholar
  7. 7.
    H. Liu, B. Xu, M. Jia, M. Zhang, B. Cao, X. Zhao, Y. Wang, Appl. Surf. Sci. 332, 40 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Kapil, M. Taunk, S. Chand, J. Mater. Sci. Mater. Electron. 21, 399 (2010)CrossRefGoogle Scholar
  9. 9.
    I. Mahmood, I. Ahmad, L. Huizhou, G. Chen, J. Mater. Sci. Mater. Electron. 24, 1181 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Hai, L. Gao, Q. Zhang, H. Xu, D. Cui, Z. Zhang, D. Tsoukalas, J. Tang, S. Yan, C. Xue, Appl. Surf. Sci. 361, 57 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Gui, C. Liu, F. Chen, J. Liu, Appl. Surf. Sci. 307, 172 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Ghosh, S. Giri, A. Mandal, C.K. Das, Appl. Surf. Sci. 276, 120 (2013)CrossRefGoogle Scholar
  13. 13.
    H.K. Chaudhari, D.S. Kelkar, Polym. Int. 42, 380 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Drozd, M.K. Marchewka, J. Mol. Struct. Theochem. 716, 175 (2005)CrossRefGoogle Scholar
  15. 15.
    N.-R. Chiou, A.J. Epstein, Synth. Met. 153, 69 (2005)CrossRefGoogle Scholar
  16. 16.
    B. Garcia, D. Bélanger, Synth. Met. 98, 135 (1998)CrossRefGoogle Scholar
  17. 17.
    D.S. Dhawale, A. Vinu, C.D. Lokhande, Electrochim. Acta 56, 9482 (2011)CrossRefGoogle Scholar
  18. 18.
    E. Raymundo-Piñero, V. Khomenko, E. Frackowiak, F. Béguin, J. Electrochem. Soc. 152, A229 (2005)CrossRefGoogle Scholar
  19. 19.
    H.R. Ghenaatian, M.F. Mousavi, S.H. Kazemi, M. Shamsipur, Synth. Met. 159, 1717 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Jin, M. Jia, Colloids Surf. A Physicochem. Eng. Asp. 464, 17 (2015)CrossRefGoogle Scholar
  21. 21.
    S.R. Sivakkumar, W.J. Kim, J.A. Choi, D.R. MacFarlane, M. Forsyth, D.W. Kim, J. Power Sources 171, 1062 (2007)CrossRefGoogle Scholar
  22. 22.
    V. Gupta, N. Miura, Electrochem. Solid-State Lett. 8, A630 (2005)CrossRefGoogle Scholar
  23. 23.
    L.J. Sun, X.X. Liu, K.K.T. Lau, L. Chen, W.M. Gu, Electrochim. Acta 53, 3036 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Fusalba, P. Gouerec, D. Villers, D. Belanger, J. Electrochem. Soc. 148, A1 (2001)CrossRefGoogle Scholar
  25. 25.
    V. Gupta, N. Miura, Mater. Lett. 60, 1466 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Kim, S. Cho, J. Song, S. Son, J. Jang, A.C.S. Appl, Mater. Interfaces 4, 4603 (2012)CrossRefGoogle Scholar
  27. 27.
    K. Rajendra Prasad, N. Munichandraiah, Electrochem. Solid-State Lett. 5, A271 (2002)CrossRefGoogle Scholar
  28. 28.
    D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, A.C.S. Appl, Mater. Interfaces 6, 200 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Wang, P. Liu, J. Ind. Eng. Chem. 20, 1324 (2014)CrossRefGoogle Scholar
  30. 30.
    Z.F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, A.C.S. Appl, Mater. Interfaces 5, 2685 (2013)CrossRefGoogle Scholar
  31. 31.
    H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Energy Environ. Sci. 6, 1185 (2013)CrossRefGoogle Scholar
  32. 32.
    Y.Y. Horng, Y.C. Lu, Y.K. Hsu, C.C. Chen, L.C. Chen, K.H. Chen, J. Power Sources 195, 4418 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Fan, C. Zhang, W.W. Tjiu, K.P. Pramoda, C. He, T. Liu, A.C.S. Appl, Mater. Interfaces 5, 3382 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Xu, K. Wang, S.-Z. Zu, B. Han, Z. Wei, ACS Nano 4, 5019 (2010)CrossRefGoogle Scholar
  35. 35.
    N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.B. Baek, ACS Nano 6, 1715 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Zhou, Z.Y. Qin, L. Li, Y. Zhang, Y.L. Wei, L.F. Wang, M.F. Zhu, Electrochim. Acta 55, 3904 (2010)CrossRefGoogle Scholar
  37. 37.
    S. Konwer, J. Mater. Sci. Mater. Electron. 27, 4139 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations