Facile synthesis and electrochemical performances of secondary carbon-coated LiFePO4-C composite for Li-ion capacitors based on neutral aqueous electrolytes

  • Shen Qiu
  • Xugang Zhang
  • Yawen Li
  • Ting Sun
  • Chenlong Wang
  • Chuanli Qin


In order to obtain LiFePO4 (LFP) with the fine particle size and high electronic conductivity, the secondary carbon-coated LFP-C composite was synthesized by a facile two-step method with polyethylene glycol (PEG) as a grain growth inhibitor and sucrose as a main carbon source. For comparison, commercial LFP and LFP prepared without PEG and sucrose were also studied. Li-ion capacitors (LICs) using environmentally friendly, safe and low-cost LiNO3 aqueous electrolyte were assembled with LFP samples as the positive electrode. Results show that the secondary carbon-coated LiFePO4-C composite with nanometer-sized particles was synthesized at 550 °C successfully and the carbon content was about 23.4 wt%. The lamellar carbon coating, with much graphitic nature, wraps and connects LFP particles, ensuring the good electronic connection between LFP particles. The results of cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance show that the electrochemical performances of secondary carbon-coated LFP dramatically increase due to the decrease of particle size through adding PEG and the increased electronic conductivity by the introduction of carbon coating. It exhibits the C pe of 845.2 F g−1 at the scanning rate of 5 mV s−1. The LIC delivers a C ps of 59.3 F g−1 and E p of 8.2 Wh kg−1 at the current density of 2 mA cm−2. The LIC exhibits an excellent cycling performance and it maintains 98 % of its initial C ps after 500 cycles. The secondary carbon-coated LiFePO4-C composite is the suitable positive electrode material for LICs with neutral aqueous electrolytes.


Electrochemical Performance LiFePO4 Carbon Coating Aqueous Electrolyte Negative Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial assistance of Natural Science Foundation Committee of China (Grant Number 21206034), Outstanding Youth Science Foundation Committee of Heilongjiang University (Grant Number JCL201202) and Graduate Student Innovation Research Project Committee of Heilongjiang Province(Grant Number YJSCX2012-318HLJ).


  1. 1.
    H. Kang, G. Wang, H. Guo, M. Chen, C. Luo, K. Yan, Eng. Chem. Res. 51, 7923 (2012)CrossRefGoogle Scholar
  2. 2.
    Z. Chang, Y. Yang, M. Li, X. Wang, Y. Wu, J. Mater. Chem. A 2, 10739 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, Electrochim. Acta 130, 766 (2014)CrossRefGoogle Scholar
  4. 4.
    V. Aravindan, W. Chuiling, M.V. Reddy, G.V. Rao, B.V. Chowdari, S. Madhavi, Phys. Chem. Chem. Phys. 14, 5808 (2012)CrossRefGoogle Scholar
  5. 5.
    W.J. Cao, J.P. Zheng, J. Electrochem. Soc. 160, A1572 (2013)CrossRefGoogle Scholar
  6. 6.
    M.D. Stoller, S. Murali, N. Quarles, Y. Zhu, J.R. Potts, X. Zhu, H.W. Ha, R.S. Ruoff, Phys. Chem. Chem. Phys. 14, 3388 (2012)CrossRefGoogle Scholar
  7. 7.
    G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, J. Electrochem. Soc. 148, A930 (2001)CrossRefGoogle Scholar
  8. 8.
    L.M. Chen, Q.Y. Lai, Y.J. Hao, J.H. Huang, X.Y. Ji, Ionics 14, 441 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Zhang, F. Zhang, L. Zhang, Y. Lu, Y. Zhang, X. Yang, Y. Ma, Y. Huang, Carbon 92, 106 (2015)CrossRefGoogle Scholar
  10. 10.
    Q. Zhu, S. Zheng, X. Lu, Y. Wan, Q. Chen, J. Yang, L.Z. Zhang, Z. Lu, J. Alloys Compd. 654, 384 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Tang, L.L. Liu, S. Tian, L. Li, L.L. Li, Y.B. Yue, Y. Bai, Y.P. Wu, K. Zhu, R. Holze, Electrochem. Commun. 13, 1159 (2011)CrossRefGoogle Scholar
  12. 12.
    F.X. Wang, S.Y. Xiao, Y. Shi, L.L. Liu, Y.S. Zhu, Y.P. Wu, J.Z. Wang, R. Holze, Electrochim. Acta 93, 301 (2013)CrossRefGoogle Scholar
  13. 13.
    X. Zeng, Q. Liu, M. Chen, L. Leng, T. Shu, L. Du, H. Song, S. Liao, Electrochim. Acta 177, 277 (2015)CrossRefGoogle Scholar
  14. 14.
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1994)CrossRefGoogle Scholar
  15. 15.
    R. Sehrawat, A. Sil, J. Mater. Sci. Mater. Electron. 26, 5175 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Shao, J. Wang, X. Dong, W. Yu, G. Liu, F. Zhang, L. Wang, J. Mate. Sci. Mater. Electron 25, 1040 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Muruganantham, M. Sivakumar, R. Subadevi, N.L. Wu, J. Mater. Sci. Mater. Electron. 26, 2095 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, R. Mei, X. Yang, Ceram. Int. 40, 8439 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, H. Guo, P. Yan, Ceram. Int. 40, 15801 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Kuzmanović, D. Jugović, M. Mitrić, B. Jokić, N. Cvjetićanin, D. Uskoković, Ceram. Int. 41, 6753 (2015)CrossRefGoogle Scholar
  21. 21.
    A.V. Murugan, T. Muraliganth, A. Manthiram, Electrochem. Commun. 10, 903 (2008)CrossRefGoogle Scholar
  22. 22.
    H. Shu, X. Wang, Q. Wu, B. Hu, X. Yang, Q. Wei, B. Hu, X. Yang, Q. Wei, Q. Liang, Y. Bai, M. Zhou, C. Wu, M. Chen, A. Wang, L. Jiang, J. Power Sources 237, 149 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Qin, X. Lu, G. Yin, Z. Jin, Q. Tan, X. Bai, Mater. Chem. Phys. 126, 453 (2011)CrossRefGoogle Scholar
  24. 24.
    L.N. Wang, X.C. Zhan, Z.G. Zhang, K.L. Zhang, J. Alloys Compd. 456, 461 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Churikov, A. Gribov, A. Bobyl, A. Kamzin, E. Terukov, Ionics 20, 1 (2013)CrossRefGoogle Scholar
  26. 26.
    Y.L. Cao, L.H. Yu, T. Li, X.P. Ai, H.X. Yang, J. Power Sources 172, 913 (2007)CrossRefGoogle Scholar
  27. 27.
    D. Choi, P.N. Kumta, J. Power Sources 163, 1064 (2007)CrossRefGoogle Scholar
  28. 28.
    X. Li, W. Wang, C. Shi, H. Wang, Y. Xing, J. Solid State Electrochem. 13, 921 (2008)CrossRefGoogle Scholar
  29. 29.
    Z. Xu, L. Xu, Q. Lai, X. Ji, Mater. Res. Bull. 42, 883 (2007)CrossRefGoogle Scholar
  30. 30.
    J. Yang, X. Han, X. Zhang, F. Cheng, J. Chen, Nano Res. 6, 679 (2013)CrossRefGoogle Scholar
  31. 31.
    Z.G. Lu, M.F. Lo, C.Y. Chung, J. Phys. Chem. C 112, 7069 (2008)CrossRefGoogle Scholar
  32. 32.
    Y.D. Cho, G.T.K. Fey, H.M. Kao, J. Power Sources 189, 256 (2009)CrossRefGoogle Scholar
  33. 33.
    O. Toprakci, H.A. Toprakci, L. Ji, G. Xu, Z. Lin, X. Zhang, A.C.S. Appl, Mater. Interfaces 4, 1273 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Naik, J. Zhou, C. Gao, L. Wang, Electrochim. Acta 142, 215 (2014)CrossRefGoogle Scholar
  35. 35.
    F.Y. Kang, J. Ma, B.H. Li, New Carbon Mater. 26, 161 (2011)CrossRefGoogle Scholar
  36. 36.
    J. He, H. Wang, C. Gu, S. Liu, J. Alloys Compd. 604, 239 (2014)CrossRefGoogle Scholar
  37. 37.
    B. Wang, D. Wang, Q. Wang, T. Liu, C. Guo, X. Zhao, J. Mater. Chem. A 1, 135 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Zhang, W. Wang, P. Li, Y. Fu, X. Ma, J. Power Sources 210, 47 (2012)CrossRefGoogle Scholar
  39. 39.
    D. Hulicova, M. Kodama, H. hatori. Chem. Mater. 18, 2318 (2006)CrossRefGoogle Scholar
  40. 40.
    Y. Liu, X. Li, H. Guo, Z. Wang, W. Peng, Y. Yang, R. Liang, J. Power Sources 184, 522 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Zhou, L. Liu, L. Yi, Z. Yang, S. Mao, Y. Zhou, T. Hu, Y. Yang, B. Shen, X. Wang, J. Power Sources 234, 292 (2013)CrossRefGoogle Scholar
  42. 42.
    L. Wang, G.C. Liang, X.Q. Ou, X.K. Zhi, J.P. Zhang, J.Y. Cui, J. Power Sources 189, 423 (2009)CrossRefGoogle Scholar
  43. 43.
    J. Zhu, K. Yoo, I. El-Halees, D. Kisailus, A.C.S. Appl, Mater. Interfaces 6, 21550 (2014)CrossRefGoogle Scholar
  44. 44.
    F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, Energy Environ. Sci. 6, 1623 (2013)CrossRefGoogle Scholar
  45. 45.
    R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc. 152, A607 (2005)CrossRefGoogle Scholar
  46. 46.
    J. Wang, X. Sun, Energy Environ. Sci. 5, 5163 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shen Qiu
    • 1
    • 2
  • Xugang Zhang
    • 3
  • Yawen Li
    • 1
    • 2
  • Ting Sun
    • 1
    • 2
  • Chenlong Wang
    • 1
    • 2
  • Chuanli Qin
    • 1
    • 2
  1. 1.School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.Key Laboratory of Chemical Engineering Process and Technology for High-efficiency ConversionCollege of Heilongjiang ProvinceHarbinPeople’s Republic of China
  3. 3.Department of AdhesivesHeilongjiang Institute of PetrochemistryHarbinPeople’s Republic of China

Personalised recommendations