Impact of Al and Ga co-doping with different proportion in ZnO thin film by DC magnetron sputtering

  • Susanta Kumar Sahoo
  • Chandan Ashis Gupta
  • Udai P. Singh


Characteristic properties of ZnO are remarkably changed due to presence of small impurity or native defects. As such intentional doping of III group elements is the front runner for researchers. In the present paper, Al doped ZnO and Ga doped ZnO and Al–Ga co-doped ZnO (AGZO) thin films are deposited on the glass substrate by DC magnetron sputtering. The result of different proportion of co-doped materials is highlighted and is compared with the doped films. It is observed that the co-doped ZnO thin films showed better optical, structural and electrical properties as compared to doped ZnO thin films. In the case of co-doped samples resistivity in the order of 10−4 ohm-cm is obtained with higher carrier concentration and high optical transparency. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) studies were done to discuss the changes observed in the structural properties. AFM result suggests the better co-doped films with less defects for practical implication to the devices. More significantly for AGZO (1:1) thin film, better optical, electrical and structural properties are obtained with a low resistivity of 5.4 × 10−4 ohm-cm and transmittance more than 80 % in the visible range of light.


Crystallite Size Ga2O3 Full Width Half Maximum High Carrier Concentration Atomic Force Microscopy Result 



Authors are thankful to Department of Science and Technology (DST), Govt. of India for providing financial support under the project # DST/TM/SERI/2K11/42. We are also thankful to Dr. T. Som of IOP, Bhubaneswar, Odisha for the AFM image.


  1. 1.
    X.R. Deng, H. Deng, M. Wei, J.J. Chen, J. Mater. Sci. Mater Electron 23, 413–417 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Mahroug, S. Boudjadar, S. Hamrit, L. Guerbous, Mater. Lett. 134, 248–251 (2014)CrossRefGoogle Scholar
  3. 3.
    L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231–1236 (2005)CrossRefGoogle Scholar
  4. 4.
    A.E. Jimenez-Gonzalez, J. Solid State Chem. 28, 176–180 (1997)CrossRefGoogle Scholar
  5. 5.
    E. Furtunato, D. Ginley, H. Hosono, D.C. Paine, MRS Bull. 32, 242–247 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Banerjee, W.J. Lee, K.R. Bae, S.B. Lee, G.W. Rubloff, J. Appl. Phys. 108, 043504 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, W. Moller, Appl. Phys. Lett. 94, 042103 (2009)CrossRefGoogle Scholar
  8. 8.
    D.-K. Kim, C.-B. Park, J. Mater. Sci. Mater. Electron. 25, 1589–1595 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Lee, D. Cheon, W.-J. Kim, K.-J. Ahn, W. Lee, Semicond. Sci. Technol. 26, 115007 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Kato, M. Sano, K. Miyamoto, T. Yao, J. Crystal Growth 538, 237–239 (2002)Google Scholar
  11. 11.
    L. Wang, D.W. Matson, E. Polikarpov, J.S. Swensen, C.C. Bonham, L. Cosimbescu, J.J. Berry, D.S. Ginley, D.J. Gaspar, A.B. Padmaperuma, J. Appl. Phys. 107, 043103 (2010)CrossRefGoogle Scholar
  12. 12.
    H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Appl. Phys. Lett. 77, 3761 (2000)CrossRefGoogle Scholar
  13. 13.
    J.H. Hu, R.G. Gordon, J. Appl. Phys. 72, 5381 (1992)CrossRefGoogle Scholar
  14. 14.
    K. Zhu, Y. Yang, W. Song, Mater. Lett. 145, 279–282 (2015)CrossRefGoogle Scholar
  15. 15.
    C.A. Gupta, S. Mangal, U.P. Singh, J. Mater. Sci. Mater. Electron. 26, 4280–4284 (2015)CrossRefGoogle Scholar
  16. 16.
    Yu. Qi, H. Li, Q. Wang, S. Cheng, L. Jiang, Y. Zhang, T. Ai, C. Guo, Mater. Lett. 128, 284–286 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Amala Rani, S. Ernest, Superlattices Microstruct. 75, 398–408 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Mahdhi, Z. Ben Ayadi, S. Alaya, J.L. Gauffier, K. Djessas, Spuerlattices Microstuct. 72, 60–71 (2014)CrossRefGoogle Scholar
  19. 19.
    Dong Yu. Fang, K. Lin, T. Xue, C. Cui, X. Chen, P. Yao, H. Li, J. Alloy. Compd. 589, 346–352 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Kim, H. Yoon, D.Y. Kim, S. Kim, J.Y. Leem, Opt. Mater. 35, 2418–2424 (2013)CrossRefGoogle Scholar
  21. 21.
    C.-Y. Tsay, W.-T. Hsy, Ceram. Int. 39, 7425–7432 (2013)CrossRefGoogle Scholar
  22. 22.
    T. Ghosh, D. Basak, Sol. Energy 96, 152–158 (2013)CrossRefGoogle Scholar
  23. 23.
    C.-S. Tian, X.-L. Chen, J. Ni, J. Liu, D.-k. Zheng, Q. Huang, Y. Zhao, X. Zhang, Sol. Energy Mater. Sol. Cells 125, 59–65 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Mahdhi, Z. BenAyadi, S. Alaya, J.L. Gauffier, K. Djessas, Superlattices Microstruct. 72, 60–71 (2014)CrossRefGoogle Scholar
  25. 25.
    N. Nevesa, A. Lagoa, J. Calado, A.M. Botelho do Rego, E. Fortunato, R. Martins, I. Ferreira, J. Eur. Ceram. Soc. 34, 2325–2338 (2014)CrossRefGoogle Scholar
  26. 26.
    R.S. Gaikwad, S.S. Bande, R.S. Mane, B.N. Pawar, S.L. Gaikwad, S.-H. Han, O.-S. Joo, Mater. Res. Bull. 47, 4257–4262 (2012)CrossRefGoogle Scholar
  27. 27.
    Y. Caglar, M. Caglar, Curr. Appl. Phys. 12, 963–968 (2012)CrossRefGoogle Scholar
  28. 28.
    Z. Ben Ayadi, H. Mahdhi, K. Djessas, J.L. Gauffier, L. El Mir, S. Alaya, Thin Solid Films 553, 123–126 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Mahdhi, Z. Ben Ayadi, S. Alaya, J.L. Gauffier, K. Djessas, Superlattices Microstuct. 72, 60–71 (2014)CrossRefGoogle Scholar
  30. 30.
    W. Huang-Wei, R.-Y. Yang, C.-M. Hsiung, C.-H. Chu, This Solid Films 520, 7147–7152 (2012)CrossRefGoogle Scholar
  31. 31.
    Yu. Xuan, Yu. Xiaoming, J. Zhang, G. Zhao, J. Ni, H. Cai, Y. Zhao, Sol. Energy Mater. Sol. Cells 128, 307–312 (2014)CrossRefGoogle Scholar
  32. 32.
    K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Ceram. Int. 07, 148 (2014)Google Scholar
  33. 33.
    C. Wan, H. Tan, S. Jin, H. Yang, M. Tang, J. He, Mater. Sci. Eng. B 150, 203–207 (2008)CrossRefGoogle Scholar
  34. 34.
    H. Dan, X. Liu, S. Deng, Y. Liu, Z. Feng, B. Han, Y. Wang, Y. Wang, Phys. E 61, 14–22 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Susanta Kumar Sahoo
    • 1
  • Chandan Ashis Gupta
    • 1
  • Udai P. Singh
    • 2
  1. 1.School of Applied SciencesKIIT UniversityBhubaneswarIndia
  2. 2.School of Electronics EngineeringKIIT UniversityBhubaneswarIndia

Personalised recommendations