Controllable growth of highly organized ZnO nanowires using templates of electrospun nanofibers

  • Jun Liu
  • Meng-Jie Chang
  • Hui-Ling Du


We present a straightforward and accessible method to fabricate high density ZnO nanowires (NWs) with tunable morphology. Our approach includes (1) electrospinning of zinc salts embedded polymer nanofibers, (2) high temperature calcination for the polymer removal and the formation of ZnO seeds, and (3) hydrothermal growth of ZnO NWs. The high resolution transmission electron emission and selected-area electron diffraction characterization results indicate that the obtained ZnO NWs have a single crystalline structure. The method could be applied to produce highly dense and organized ZnO NWs with different pattern morphologies, including aligned, uniform film and hierarchical structured ZnO NWs mostly depending on the initial electrospinning conditions. The length of the ZnO NWs could be controlled in the range of 1–8 μm by different growth time, which are able to generate the hydrophobic surface with different wetting properties. Due to the convenient preparation and large surface areas, the ZnO NWs fabricated by this method are suitable for a range of energy applications.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Zinc Acetate HMTA Zinc Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (21501140, 21403165, 51372197), the Science Research Program Funded by Shaanxi Provincial Education Department (14JK1468, 15JK1453), the Science and Technology Department of Shaanxi Province (2015JQ2047) and the Key Innovation Team of Shaanxi Province (2014KCT-04).


  1. 1.
    S. Xu, Y. Qin, C. Xu, Y.G. Wei, R.S. Yang, Z.L. Wang, Nat. Nanotech. 5, 366–373 (2010)CrossRefGoogle Scholar
  2. 2.
    Q. Li, X. Sun, K. Lozano, Y. Mao, J. Phys. Chem. C 118, 13467–13475 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Zhang, X. Huang, C. Li, H. Jiang, Adv. Mater. 25, 4093–4096 (2013)CrossRefGoogle Scholar
  4. 4.
    X. Sun, Y. Huang, M. Zong, H. Wu, X. Ding, J. Mater. Sci. Mater. Electron. 27, 2682–2686 (2015)CrossRefGoogle Scholar
  5. 5.
    D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, G. Cantwell, Phys. Rev. B 57, 12151–12155 (1998)CrossRefGoogle Scholar
  6. 6.
    Z.L. Wang, Mater. Sci. Eng. R 64, 33–71 (2009)CrossRefGoogle Scholar
  7. 7.
    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666–671 (2011)CrossRefGoogle Scholar
  8. 8.
    Y. Ren, L. Yang, L. Wang, T. Xu, G. Wu, H. Wu, Powder Technol. 281, 20–27 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Ahmad, C.F. Pan, J. Iqbal, L. Gan, J. Zhu, Chem. Phys. Lett. 480, 105–109 (2009)CrossRefGoogle Scholar
  10. 10.
    P.X. Gao, Z.L. Wang, J. Phys. Chem. B 106, 12653–12658 (2002)CrossRefGoogle Scholar
  11. 11.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126, 16744–16746 (2004)CrossRefGoogle Scholar
  12. 12.
    Z.J. Gu, M.P. Paranthaman, J. Xu, Z.W. Pan, ACS Nano 3, 273–278 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Wu, Q. Wu, L. Wang, Mater. Charact. 103, 1–10 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Hu, L. Wang, Q. Wu, H. Wu, Adv. Powder Technol. 25, 1780–1785 (2014)CrossRefGoogle Scholar
  15. 15.
    J.L. Shui, J.C.M. Li, Nano Lett. 9, 1307–1314 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Schlecht, S.T. Tan, M. Yosef, R. Dersch, J.H. Wendorff, Z.H. Jia, A. Schaper, Chem. Mater. 17, 809–814 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Ahmad, C.F. Pan, Z.X. Luo, J. Zhu, J. Phys. Chem. C 114, 9308–9313 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Zhu, M. Hong, G.W. Ho, Sci. Rep. 5, 11609 (2015)CrossRefGoogle Scholar
  19. 19.
    R.Y. Wang, J. Guo, D. Chen, Y.E. Miao, J.S. Pan, W.W. Tjiub, T.X. Liu, J. Mater. Chem. 21, 19375–19380 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, Y. Xie, J. Chen, J. Liu, C. Gao, C. Yun, B. Lu, E. Xie, I. Lloyd, J. Am. Ceram. Soc. 94, 4387–4390 (2011)CrossRefGoogle Scholar
  21. 21.
    Y.H. Li, J. Gong, Y.L. Deng, Sens. Actuators A 158, 176–182 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Wang, F. Sun, Y. Huang, Y. Duan, Z. Yin, Chem. Commun. 51, 3117–3120 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Dong, P. Yang, R. Shi, Mater. Lett. 135, 96–98 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Xu, C.S. Lao, B. Weintraub, Z.L. Wang, J. Mater. Res. 23, 2072–2077 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Yamabi, H. Imai, J. Mater. Chem. 12, 3773–3778 (2002)CrossRefGoogle Scholar
  26. 26.
    L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P.D. Yang, Inorg. Chem. 45, 7535–7543 (2006)CrossRefGoogle Scholar
  27. 27.
    L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P.D. Yang, Nano Lett. 5, 1231–1236 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Ahmad, J. Zhu, J. Mater. Chem. 21, 599–614 (2011)CrossRefGoogle Scholar
  29. 29.
    L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Angew. Chem. Int. Ed. 42, 3031–3034 (2003)CrossRefGoogle Scholar
  30. 30.
    M. Guo, P. Diao, S.M. Cai, Thin Solid Films 515, 7162–7166 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations