Enhanced dielectric and piezoelectric properties in BaZrO3 modified BiFeO3–PbTiO3 high temperature ceramics

  • Qiang Li
  • Yingjie Dong
  • Jinrong Cheng
  • Jianguo Chen


(0.67–x)BiFeO3–0.33PbTiO3xBaZrO3 (BF–PT–BZ) ceramics were prepared by conventional solid state reaction method. X-ray diffraction analysis indicated that a phase transformation from tetragonal (T) to rhombohedral (R) took place with increasing the BZ content, and the coexistence of two phases were observed near the composition range from 0.08 to 0.12. Introduction of BZ reduced the c/a ratio, decreased the grain size, and improved the dielectric as well as piezoelectric properties obviously. Both high Curie temperature and good electrical properties were obtained in the BF–PT–BZ solid solutions with x = 0.08. The Curie temperature T C, dielectric constant ε r, dielectric loss tan δ, piezoelectric constant d 33, electromechanical coupling factor k p were 540 °C, 640, 0.02, 117 pC/N, 0.34, respectively. The depolarization temperature T d was 470 °C, about 320 °C higher than that of commercialized PZT ceramics, showing better electrical thermal stability.


Dielectric Loss Curie Temperature BiFeO3 Piezoelectric Property Conventional Solid State Reaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No. 51302163) and the Innovational Foundation of Shanghai University (Grant No. K. 10-0110-13-009).


  1. 1.
    D.I. Woodward, I.M. Reaney, E. EitelR et al., J. Appl. Phys. 94, 3313–3318 (2003)CrossRefGoogle Scholar
  2. 2.
    C. Correas, I. Martínez, A. Castro et al., J. Alloys Compd. 509(18), 5483–5487 (2011)CrossRefGoogle Scholar
  3. 3.
    D.M. Stein, P.K. Davies, J. Appl. Phys. Lett. 99(18), 182907 (2011)CrossRefGoogle Scholar
  4. 4.
    A.H. Qureshi, G. Shabbir, D.A. Hall, Mater. Lett. 61(23), 4482–4484 (2007)CrossRefGoogle Scholar
  5. 5.
    J. Chen, D. Jin, J. Cheng, J. Alloys Compd. 580, 67–71 (2013)CrossRefGoogle Scholar
  6. 6.
    V.F. Freitas, I.A. Santos, E. Botero et al., J. Am. Ceram. Soc. 94(3), 754–758 (2011)CrossRefGoogle Scholar
  7. 7.
    T.P. Comyn, S.P. McBride, A.J. Bell, Mater. Lett. 58(30), 3844–3846 (2004)CrossRefGoogle Scholar
  8. 8.
    W. Hu, X. Tan, K. Rajan, Appl. Phys. A 99(2), 427–431 (2010)CrossRefGoogle Scholar
  9. 9.
    Z. Yao, L. Peng, H. Liu et al., J. Alloys Compd. 509(18), 5637–5640 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Dai, J. Chen, J. Cheng, Ceram. Int. 40(8), 13299–13303 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Hou, J. Yu, J. Jpn, Appl. Phys. 52(6R), 061501 (2013)Google Scholar
  12. 12.
    L. Zhang, X. Hou, J. Yu, Jpn. J. Appl. Phys. 54(8), 081501 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Hou, J. Yu, J. Am. Ceram. Soc. 96(7), 2218–2224 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Ning, X. Hou, J. Mater. Sci.: Mater. Electron. 26(3), 1690–1694 (2015)Google Scholar
  15. 15.
    W. Hu, X. Tan, K. Rajan, J. Eur. Ceram. Soc. 31(5), 801–807 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Fan, J. Chen, S. Li, H. Kang, L. Liu, L. Fang, X. Xing, Appl. Phys. Lett. 102(2), 022905 (2013)CrossRefGoogle Scholar
  17. 17.
    S.C. Abrahams, S.K. Kurtz, P.B. Jamieson, Phys. Rev. 172(2), 551 (1968)CrossRefGoogle Scholar
  18. 18.
    T. Leist, T. Granzow, W. Jo et al., J. Appl. Phys. 108(1), 014103 (2010)CrossRefGoogle Scholar
  19. 19.
    A.B. Kounga, T. Granzow, E. Aulbach et al., J. Appl. Phys. 104(2), 024116 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qiang Li
    • 1
  • Yingjie Dong
    • 1
  • Jinrong Cheng
    • 1
  • Jianguo Chen
    • 1
  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations