Impact of post deposition annealing in O2 ambient on structural properties of nanocrystalline hafnium oxide thin film

  • Shilpi Pandey
  • Prateek Kothari
  • Sunil Kumar Sharma
  • Seema Verma
  • K. J. Rangra


In the present work, HfO2 thin film (100 nm) has been deposited by sputtering technique and annealed at various temperatures ranging from 400 to 1000 °C (in step of 200 °C) in O2 ambient for 10 min. The samples have been characterized using XRD, FTIR, EDAX, AFM and Laser Ellipsometer. The impact of annealing temperatures in O2 ambient on structural properties such as crystallite size, phase, orientation, stress have been studied using XRD. The Hf–O phonon peaks in the infrared absorption spectrum are detected at 512, 412 cm−1. The stretching vibration modes at 720 and 748 cm−1 correspond to HfO2. AFM data show mean grain size in the range of 38–67 nm. The film reveals variation in structural properties, which appears to be responsible for variation in oxygen percentage, refractive index (1.96–2.01) at 632 nm wavelength and roughness (6.13–16.40 nm). Annealing temperature as well as ambient condition has significant effects on stress, crystal size and thus the arrangement of atoms. For good quality film, annealing temperature larger than 600 °C is desired.


HfO2 Barium Strontium Titanate Lattice Contraction Atomic Force Microscope Data Post Deposition Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Dr. Chandershekhar, Ex-Director, CSIR-CEERI, Pilani for giving me the opportunity to carry out the research work at CSIR-CEERI Pilani. I sincerely thank Mr. Triloki, Senior Researcher, BHU, Varansai for his invaluable guidance and help. I also express my thanks to Mr. Ashok, Technical Assistant, Banasthali University, Banasthali and Mr. Sanjeev Kumar, Scientist, CSIR-CEERI Pilani, for carrying out XRD and AFM experiment, respectively. The authors acknowledge the financial assistance under network Project-PSC0201, Council of Scientific and Industrial Research (CSIR). Author is grateful to HRDG, CSIR, for granting Senior Research Fellowship.


  1. 1.
    M. Vargas, N.R. Murphy, C.V. Ramana, Opt. Mater. (2014). doi: 10.1016/j.optmat.2014.08.005 Google Scholar
  2. 2.
    K.K. Bharathi, N.R. Kalidindi, C.V. Ramana, J. Appl. Phys. (2010). doi: 10.1063/1.3499325 Google Scholar
  3. 3.
    A. Cantas, G. Aygun, R. Tarun, Appl. Surf. Sci. (2014). doi: 10.1016/j.apsusc.2014.03.077 Google Scholar
  4. 4.
    A. Srivastava, R.K. Nahar, C.K. Sarkar, J. Mater. Sci. Mater. Electron. (2011). doi: 10.1007/s10854-010-0230-8 Google Scholar
  5. 5.
    Y. Zhang, K. Onodera, R. Maeda, Jpn. J. Appl. Phys. (2006). doi: 10.1143/JJAP.45.300 Google Scholar
  6. 6.
    Y. Zhang, L. Jian, K. Onodera, R. Maeda, Sens. Actuators A (2007). doi: 10.1016/j.sna.2007.02.005 Google Scholar
  7. 7.
    J. Tsaur, K. Onodera, T. Kobayashi, Z.J. Wang, S. Heisig, R. Maeda, T. Suga, Sens. Actuators A Phys. (2005). doi: 10.1016/j.sna.2005.01.026 Google Scholar
  8. 8.
    X.J. He, Z.Q. Lv, B. Liu, Z.H. Li, Sens. Actuators A (2012). doi: 10.1016/j.sna.2012.03.013 Google Scholar
  9. 9.
    Q. Fang, J.-Y. Zhang, Z. Wang, M. Modreanu, B.J. O’Sullivan, P.K. Hurley, T.L. Leedham, D. Hywel, M.A. Audier, C. Jimenez, J.-P. Senateur, I.W. Boyd, Thin Solid Films (2004). doi: 10.1016/j.tsf.2003.11.186 Google Scholar
  10. 10.
    R. Thielsch, A. Gatto, J. Heber, N. Kraiser, Thin Solid Films (2002). doi: 10.1016/S0040-6090(02)00208-0 Google Scholar
  11. 11.
    G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, L.D. Zhang, Surf. Sci. (2005). doi: 10.1016/j.susc.2004.11.042 Google Scholar
  12. 12.
    O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, J. Phys. D Appl. Phys. (2010). doi: 10.1088/0022-3727/43/5/055402 Google Scholar
  13. 13.
    J. Zhu, Z.G. Liu, Y. Feng, J. Phys. D Appl. Phys. (2003). doi: 10.1088/0022-3727/36/23/028 Google Scholar
  14. 14.
    M.J. Madou, Fundamentals of microfabrication: the science of miniaturization (CRC Press, Boca Raton, 2002)Google Scholar
  15. 15.
    R.K. Nahar, V. Singh, Microelectron. Int. Int. J. (2010). doi: 10.1108/13565361011034777 Google Scholar
  16. 16.
    S. Hall, O. Buiu, I.Z. Mitrovic, Y. Lu, W.M. Davey, J. Telecommun. Inf. Technol. 2, 33–43 (2007)Google Scholar
  17. 17.
    K.V.L.V. Narayanachari, H. Chandrasekar, A. Banerjee, K.B.R. Varma, R. Ranjan, N. Bhat, S. Raghavan, Condens. Matter Mater. Sci. (2015) arXiv preprint arXiv:1503.08299
  18. 18.
    K.V.L.V. Narayanachariand, S. Raghavan, J. Appl. Phys. (2012). doi: 10.1063/1.4757924 Google Scholar
  19. 19.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall Inc., Englewood Cliffs, 2001)Google Scholar
  20. 20.
    S.K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R.R. Bhatia, Appl. Surf. Sci. (2013). doi: 10.1016/j.apsusc.2012.10.113 Google Scholar
  21. 21.
    M.C. Cisneros-Morales, C.R. Aita, Appl. Phys. Lett. (2010). doi: 10.1063/1.3428965 Google Scholar
  22. 22.
    Joint Committee on Powder Diffraction Standards Card No. 78-0050Google Scholar
  23. 23.
    D.A. Neumayer, E. Cartier, J. Appl. Phys. (2001). doi: 10.1063/1.1382851 Google Scholar
  24. 24.
    M. Toledano-Luque, E. San Andres, A. del Prado, I. Martil, M.L. Lucia, G. Gonzalez-Diaz, J. Appl. Phys. (2007). doi: 10.1063/1.2769959 Google Scholar
  25. 25.
    D.A. Neumayer, E. Cartier, J. Appl. Phys. (2001). doi: 10.1063/1.1382851 Google Scholar
  26. 26.
    G. He, L.D. Zhang, Q. Fang, J. Appl. Phys. (2006). doi: 10.1063/1.2361161 Google Scholar
  27. 27.
    G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, R.S. Urdahl, Appl. Phys. Lett. (1998). doi: 10.1063/1.122191 Google Scholar
  28. 28.
    T.C. Chen, C.Y. Peng, C.H. Tseng, M.H. Liao, M.H. Chen, C.I. Wu, M.Y. Chern, P.J. Tzeng, C.W. Liu, IEEE Trans. Electron. Devices (2007). doi: 10.1109/TED.2007.892012 Google Scholar
  29. 29.
    G. Aygun, I. Yildiz, J. Appl. Phys. (2009). doi: 10.1063/1.3153953 Google Scholar
  30. 30.
    J.C. Hackley, T. Gougousi, Thin Solid Films (2009). doi: 10.1016/j.tsf.2009.04.033 Google Scholar
  31. 31.
    F.L. Martinez, M. Toledano-Luque, J.J. Gandia, J. Carabe, W. Bohne, J. Rohrich, E. Strub, I. Martil, J. Phys. D Appl. Phys. (2007). doi: 10.1088/0022-3727/40/17/037 Google Scholar
  32. 32.
    M. Ramzan, A.M. Rana, E. Ahmed, M.F. Wasiq, A.S. Bhatti, M. Hafeez, A. Ali, M.Y. Nadeem, Mater. Sci. Semicond. Process. (2015). doi: 10.1016/j.mssp.2014.12.079 Google Scholar
  33. 33.
    C.Y. Ma et al., Thin Solid Films (2013). doi: 10.1016/j.tsf.2013.08.068 Google Scholar
  34. 34.
    B. Deng et al., J. Mater. Sci. Mater. Electron. (2014). doi: 10.1007/s10854-014-2144-3 Google Scholar
  35. 35.
    G. He et al., Surf. Sci. (2005). doi: 10.1016/j.susc.2004.11.042 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shilpi Pandey
    • 1
    • 2
  • Prateek Kothari
    • 1
  • Sunil Kumar Sharma
    • 3
  • Seema Verma
    • 2
  • K. J. Rangra
    • 1
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.Banasthali VidyapithP O Banasthali VidyapithIndia
  3. 3.Solid State Physics LaboratoryNew DelhiIndia

Personalised recommendations