Advertisement

Influence of thickness and calcination under ammonia gas flow on topographical, optical and photocatalytic properties of Nb2O5 thin films prepared by sol–gel: a comparative study

  • Mohd. Danish
  • Ashutosh Pandey
Article

Abstract

Nb2O5 thin films have been fabricated by spin coating of niobium alkoxide sols on ITO coated glass substrates. The effects of variation in thickness and calcination conditions (i.e. under oxygen and under ammonia gas flow) on optical and photocatalytic properties of the films was investigated. Two sets of Nb2O5 thin films were prepared. One set of the films (N-1a, N-1b, N-1c and N-1d) were calcined under ammonia gas flow and the other (1a, 1b, 1c and 1d) under oxygen gas flow at 500 °C for 1 h. Thicknesses of the films were found to decrease from ≈143.0 to ≈121.0 nm upon increasing the rotation speed of the spin coater from 500 to 2000 rpm. The prepared films were characterized by X-ray diffraction, AFM, Ellipsometry and UV–Vis–NIR spectroscopy. Notably, narrowing of band gaps was observed after calcination under NH3 environment. On account of the observed grain sizes and band gap energies, a comparative evaluation of the efficiencies for photocatalytic degradation of methylene blue under UV irradiation was also done.

Keywords

Methylene Blue Photocatalytic Activity Methylene Blue Nb2O5 Average Crystallite Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Authors are grateful to Centre for Interdisciplinary Research Facility, MNNIT, Allahabad.

References

  1. 1.
    S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, M.H. Cho, RSC Adv. 4, 16782 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Zhao, X. Zhou, S.C. Edman Tsang, Nano Rev. 3, 17631 (2012)CrossRefGoogle Scholar
  3. 3.
    M.P.F. Graca, A. Meireles, C. Nico, M.A. Valente, J. Alloys Compd. 553, 177 (2013)CrossRefGoogle Scholar
  4. 4.
    L.T. Arenas, P.C.M. Villis, J. Arguello, R. Landers, E.V. Benvenutti, Y. Gushikem, Talanta 83, 241 (2010)CrossRefGoogle Scholar
  5. 5.
    D. Velten, E. Eisenbarth, N. Schanne, J. Breivie, J. Mater. Sci. Mater. Med. 15, 457 (2004)CrossRefGoogle Scholar
  6. 6.
    X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye, Z. Zou, Appl. Surf. Sci. 253, 8500 (2007)CrossRefGoogle Scholar
  7. 7.
    H.-Y. Lin, H.-C. Yang, W.-L. Wang, Catal. Today 174, 106 (2011)CrossRefGoogle Scholar
  8. 8.
    Y.-H. Pai, S.-Y. Fang, J. Power Sources 230, 321 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Qi, R. Zuo, Y. Liu, Y. Wang, Mater. Res. Bull. 48, 1213 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Ge, H. Jia, H. Zhao, Z. Zheng, L. Zhang, J. Mater. Chem. 20, 3052 (2010)CrossRefGoogle Scholar
  11. 11.
    S.-Q. Guo, X. Zhang, Z. Zhou, G.-D. Gao, L. Liu, J. Mater. Chem. A 2, 9236 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Pawlicka, M. Atik, M.A. Aegerter, J. Mater. Sci. Lett. 14, 1568 (1995)CrossRefGoogle Scholar
  13. 13.
    J. Livage, D. Ganguli, Sol. Energy Mater. Sol. Cells 68, 365 (2001)CrossRefGoogle Scholar
  14. 14.
    M.A. Aegerter, C.O. Avellaneda, A. Pawlicka, M. Atik, J. Sol-Gel. Sci. Technol. 8, 689 (1997)Google Scholar
  15. 15.
    M.A. Aegerter, Sol. Energy Mater. Sol. Cells 68, 401 (2001)CrossRefGoogle Scholar
  16. 16.
    R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, L. Yang, Z. Zhou, Y. Li, X. Wu, Mater. Lett. 49, 277 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Dhar, T.L. Alford, J. Appl. Phys. 112, 103 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Gandhi, R. Dangi, S. Bhardwaj, Rasayan J. Chem. 1, 567 (2008)Google Scholar
  20. 20.
    P. Guo, M.A. Aegerter, Thin Solid Films 351, 290 (1999)CrossRefGoogle Scholar
  21. 21.
    C.C. Lee, C.L. Tien, J.C. Hsu, J. Appl. Opt. 41, 2043 (2002)CrossRefGoogle Scholar
  22. 22.
    F. Richter, H. Kupfer, P. Schlott, T. Gessner, C. Kaufmann, Thin Solid Films 389, 278 (2001)CrossRefGoogle Scholar
  23. 23.
    K. Mizuuchi, H. Ohta, K. Yamamoto, M. Kato, Opt. Lett. 22, 1217 (1997)CrossRefGoogle Scholar
  24. 24.
    R.L. Aagard, Appl. Phys. Lett. 27, 605 (1975)CrossRefGoogle Scholar
  25. 25.
    R.A. Rani, A.S. Zoolfakar, P.A. O’Mullane, M.W. Austin, K.K. Zadeh, J. Mater. Chem. A 2, 15683 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Huang, Y. Xu, S.J. Ding, H.L. Lu, Q.Q. Sun, D.W. Zhang, Z. Chen, Appl. Surf. Sci. 257, 7305 (2011)CrossRefGoogle Scholar
  27. 27.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Kościelska, A. Winiarski, J. Non Cryst. Solids 354, 4349 (2008)CrossRefGoogle Scholar
  29. 29.
    M.C. Wang, H.J. Lin, C.H. Wang, H.C. Wu, Ceram. Int. 38, 195 (2012)CrossRefGoogle Scholar
  30. 30.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  31. 31.
    X. Chen, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)CrossRefGoogle Scholar
  32. 32.
    M.U. Khan, M. Al-shahry, W.B. Ingler Jr, Science 297, 2243 (2002)CrossRefGoogle Scholar
  33. 33.
    J. Yu, G. Dai, Q. Xiang, M. Jaroniec, J. Mater. Chem. 21, 1049 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Lin, Z. Jiang, C. Zhu, X. Hu, X. Zhang, H. Zhu, J. Fan, S.H. Lin, J. Mater. Chem. A 1, 4516 (2013)CrossRefGoogle Scholar
  35. 35.
    B. Kościelska, A. Winiarski, B. Kusz, J. Non Cryst. Solids 355, 1342 (2009)CrossRefGoogle Scholar
  36. 36.
    V.N. Zhitomirsky, I. Grimberg, L. Rapoport, N.A. Travitzky, R.L. Boxman, S. Goldsmith, Thin Solid Films 326, 134 (1998)CrossRefGoogle Scholar
  37. 37.
    K.S. Havey, J.S. Zabinski, S.D. Walck, Thin Solid Films 303, 238 (1997)CrossRefGoogle Scholar
  38. 38.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, NY, 1985)Google Scholar
  39. 39.
    M. Danish, S. Ambreen, A. Chauhan, A. Pandey, J. Saudi Chem. Soc. 19, 557 (2015)CrossRefGoogle Scholar
  40. 40.
    JCPDS-PDFS (1967) Inorganic volume 6–10, pp 7–61Google Scholar
  41. 41.
    Moser and Schweiz, Mineral. Petrogr. Mitt. 45, 35 (1965)Google Scholar
  42. 42.
    X.J. Wang, F. Krumeich, M. Wörle, R. Nesper, L. Jantsky, H. Fjellvag, Chem. Eur. J. 18, 5970 (2012)CrossRefGoogle Scholar
  43. 43.
    K. Hukari, R. Dannenberg, E.A. Stach, J. Mater. Res. 17, 550 (2002)CrossRefGoogle Scholar
  44. 44.
    P.G. Wu, C.H. Ma, J.K. Shang, Appl. Phys. A 81, 1411 (2005)CrossRefGoogle Scholar
  45. 45.
    J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14, 3808 (2002)CrossRefGoogle Scholar
  46. 46.
    R. Grilli, D. Di Camillo, L. Lozzi, I. Horovitz, H. Mamane, D. Avisar, M.A. Baker, Mater. Chem. Phys. 159, 25 (2015)CrossRefGoogle Scholar
  47. 47.
    W.K. Jo, R.J. Tayade, Chin. J. Catal. 35, 1781 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations