Advertisement

Photoelectrochemical properties of lead-free ferroelectric ceramic Ba(Ti0.96Mg0.013Nb0.026)O3: application to solar conversion of eosin

  • N. Bensemma
  • G. Rekhila
  • N. Boutal
  • K. Taïbi
  • M. Trari
Article

Abstract

The lead-free Ba(Ti0.96Mg0.013Nb0.026)O3 composition has been prepared by solid state reaction. The room temperature X-ray diffraction revealed a perovskite phase with a tetragonal symmetry. The complex dielectric permittivity measured on cooling from 470 to 150 K in the frequency range (102–106 Hz) indicated a ferroelectric behavior and exhibited a large electromechanical response. This ferroelectric perovskite showed photoelectrochemical properties with an optical gap of 2.90 eV, n-type conduction and a flat band potential of −0.57 V SCE . As application, the oxide is successfully tested for the eosin oxidation under solar light. At pH ~ 6.3, 90 % of eosin (15 mg L−1) disappeared after 6 h of illumination for a catalyst dose of 2.5 g L−1.

Keywords

Perovskite BaTiO3 Ferroelectric Property Tetragonal Symmetry Complex Dielectric Permittivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to Dr. B. Bellal for his valuable assistance in optical measurements. This work was supported financially by the Faculty of Chemistry (USTHB, Algiers). The authors wish to express their sincere thanks to the Electronic Ceramics Department of Jozef Stefan Institute (Ljubjana, Slovenia) for the use of their facilities.

References

  1. 1.
    J.L. Giocondi, G.S. Rohrer, Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J. Phys. Chem. B 105, 8275 (2001)CrossRefGoogle Scholar
  2. 2.
    N.V. Burbure, P.A. Saladore, G.S. Rohrer, Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity. Chem. Mater. 22, 5823 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction Bi2O3/BaTiO3: a strategy for the design of efficient combined catalyst. J. Phys. Chem. C 111, 18288 (2007)CrossRefGoogle Scholar
  4. 4.
    G.A. Smolenskii, A.I. Agranovskaya, Dielectric polarization of a number of complex compounds. Sov. Phys. Solid State 1, 1429 (1959)Google Scholar
  5. 5.
    L.E. Cross, Relaxor Ferroelectrics. Ferroelectrics 76, 241 (1987)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskites-related compounds. Mater. Chem. Phys. 96, 234 (2006)CrossRefGoogle Scholar
  7. 7.
    Z.H. Li, Y.X. Wang, J.W. Liu, G. Chen, Y. Li, C. Zhou, Photocatalytic hydrogen production from aqueous methanol solutions under visible light over Na(BixTa1−x)O3 solid-solution. Int. J. Hydrog. Energy 34, 147 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Kerfah, K. Taïbi, S. Omeiri, M. Trari, Relaxor ferroelectric and photocatalytic behaviour of Ba0.785Bi0.127Y0.017 TiO3 composition. Sol. Energy 85, 443 (2011)CrossRefGoogle Scholar
  9. 9.
    N. Boutal, G. Rekhila, K. Taïbi, M. Trari, Relaxor ferroelectric and photoelectrochemical properties of lead-free Ba1−xEu(Ti0.75Zr0.25)O3 ceramics. Application to chromate reduction. Sol. Energy 99, 291 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971), p. 317Google Scholar
  11. 11.
    J.H. Paik, S. Nahm, J.D. Bylin, M.H. Kim, H.J. Lee, The effect of Mg deficiency on the microwave dielectric properties of BaMg1/3Nb2/3O3. J. Mater. Sci. Lett. 17, 1777 (1998)CrossRefGoogle Scholar
  12. 12.
    X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behaviour of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. Appl. Phys. 102, 84106 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Simon, J. Ravez, M. Maglione, Relaxor properties of Ba1−x Bi0.067(Ti1−xZrx)O3 ceramics. Solid State Sci. 7, 925 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Ravez, A. Simon, Some solid state chemistry aspect. J. Solid State Chem. 162, 260 (2001)CrossRefGoogle Scholar
  15. 15.
    C.A. Randall, A.S. Bahlla, Nanostructural-property relations in complex lead perovskites. Jpn. J. Appl. Phys. 29, 327 (1990)CrossRefGoogle Scholar
  16. 16.
    M. Goudarzi, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, N. Mir, Controlled synthesis of Tl2O3 nanostructures via microwave route by a novel pH adjuster and investigation of its photocatalytic activity. J. Mater. Sci. Mater. Electron. 26, 5326 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Ramezani, A. Davoodi, A. Malekizad, S.M. Hosseinpour-Mashkani, Synthesis and characterization of Fe2TiO5 nanoparticles through a sol–gel method and its photocatalyst applications. J. Mater. Sci. Mater. Electron. 26, 3957 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol–gel method. J. Mater. Sci. Mater. Electron. 26, 4848 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, H.G. Estarki, Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci. Mater. Electron. 26, 7588 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, TiO2 thin film: preparation, characterization, and its photocatalytic degradation of basic yellow 28 dye. J.N.S. 5, 183 (2015)Google Scholar
  21. 21.
    H. Mekatel, S. Amokrane, B. Bellal, M. Trari, D. Nibou, Chem. Eng. J. 15, 611 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Boultif, D. Louer, J. Appl, Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724 (2004)CrossRefGoogle Scholar
  23. 23.
    G.H. Kwei, A.C. Lawson, S.J.L. Billinge, Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368 (1993)CrossRefGoogle Scholar
  24. 24.
    R.D. Shannon, C.T. Prewitt, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  25. 25.
    A. Verbaere, Y. Piffard, Z.G. Ye, E. Housson, Lead magnoniobiate crystal structure determination. Mat. Res. Bull. 27, 1227 (1992)CrossRefGoogle Scholar
  26. 26.
    A.K. Singh, D. Pandey, Evidence for MB and MC phases in the morphotropic phase boundary region of (1 − x)[Pb (Mg1/3Nb2/3)O3] − x PbTiO3: a Rietveld study. Phys. Rev. B 67, 064102 (2003)CrossRefGoogle Scholar
  27. 27.
    G. Xu, G. Shirane, J.R.D. Copley, P.M. Gehring, Neutron elastic diffuse scattering study of Pb (Mg1/3Nb2/3) O3. Phys. Rev. B 69, 064112 (2004)CrossRefGoogle Scholar
  28. 28.
    S.C. Abrahams, S.K. Kurtz, P.B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 172, 551 (1968)CrossRefGoogle Scholar
  29. 29.
    W.M. Haynes (ed.), Handbook of Chemistry and Physics (CRC Press, Gladstone, 2014–2015)Google Scholar
  30. 30.
    A.H. Ghanbari Niaki, A.M. Bakhshayesh, M.R. Mohammad, Sol. Energy 103, 210 (2014)CrossRefGoogle Scholar
  31. 31.
    Y.-D. Zhang, X.-M. Huang, D.-M. Li, Y.-H. Luo, Q.-B. Meng, Sol. Energy Mater. Sol. Cells 98, 417 (2012)CrossRefGoogle Scholar
  32. 32.
    D. Nibou, H. Mekatel, S. Amokrane, M. Barkat, M. Trari, Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. J. Hazard. Mater. 173, 637 (2010)CrossRefGoogle Scholar
  33. 33.
    B. Hadjarab, M. Trari, M. Kebir, Mater. Sci. Semicond. Process. 29, 283 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Bensemma
    • 1
  • G. Rekhila
    • 2
  • N. Boutal
    • 1
  • K. Taïbi
    • 1
  • M. Trari
    • 2
  1. 1.Crystallography-Thermodynamics Laboratory, Faculty of ChemistryUSTHBAlgiersAlgeria
  2. 2.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria

Personalised recommendations