Skip to main content

Advertisement

Log in

Growth of 3D branched ZnO nanowire for DC-type piezoelectric nanogenerators

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have demonstrated 3D branched ZnO nanotrees (ZNTs) on flexible ITO–PET substrates by a facile two-step hydrothermal approach. The characterization of the as-grown ZNTs was studied by using SEM and XRD. Furthermore, self-powered piezoelectric nanogenerators (NGs) based on these ZNTs were fabricated. It is proved that the ZNT structures could significantly enhance the output current to ~300 nA, much higher than that of the previously reported NWs-based NGs, and their application toward energy harvesting devices is promising for the miniaturization of a power package and wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)

    Article  Google Scholar 

  2. L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293(5532), 1119–1122 (2001)

    Article  Google Scholar 

  3. A. Hagfeldt, M. Gratzel, Molecular photovoltaics. Acc. Chem. Res. 33(5), 269–277 (2000)

    Article  Google Scholar 

  4. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  5. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–790 (2006)

    Article  Google Scholar 

  6. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)

    Article  Google Scholar 

  7. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, Luping Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3, 649–653 (2009)

    Article  Google Scholar 

  8. H.X. Ji, D.P. Sellan, M.T. Pettes, X.H. Kong, J.Y. Ji, L. Shi, R.S. Ruoff, Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7(3), 1185–1192 (2013)

    Article  Google Scholar 

  9. Y. Yang, W.X. Guo, K.C. Pradel, G. Zhu, Y.S. Zhou, Y. Zhang, Y.F. Hu, L. Lin, Z.L. Wang, Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12(6), 2833–2838 (2012)

    Article  Google Scholar 

  10. Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(14), 242–245 (2006)

    Article  Google Scholar 

  11. S. Lee, J.I. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, Z.L. Wang, Toward robust nanogenerators using aluminum substrate. Adv. Mater. 24, 4398–4402 (2012)

    Article  Google Scholar 

  12. J.H. Lee, K.Y. Lee, M.K. Gupta, T.Y. Kim, D.Y. Lee, J. Oh, C. Ryu, W.J. Yoo, C.Y. Kang, S.J. Yoon, Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 26(29), 4909–5066 (2014)

    Article  Google Scholar 

  13. S. Lee, S.H. Bae, L. Lin, Y. Yang, C. Park, S.W. Kim, S.N. Cha, H. Kim, Y.J. Park, Z.L. Wang, Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Mater. 23, 2445–2449 (2013)

    Google Scholar 

  14. Y.F. Lin, J.H. Song, Y. Ding, Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 20(16), 3127–3130 (2008)

    Article  Google Scholar 

  15. X. Chen, S.Y. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010)

    Article  Google Scholar 

  16. Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011)

    Article  Google Scholar 

  17. K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J.L. Kang, Z.L. Wang, K.J. Lee, Piezoelectric BaTiO3 Thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939–4943 (2010)

    Article  Google Scholar 

  18. J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008)

    Article  Google Scholar 

  19. Q. Wan, W.H. Li, Y.J. Chen, T.H. Wang, X.L. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84(18), 3654–3656 (2004)

    Article  Google Scholar 

  20. W.I. Park, G.C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 16(1), 87–90 (2004)

    Article  Google Scholar 

  21. Y. Xi, J.H. Song, S. Xu, Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 19(48), 9260–9264 (2009)

    Article  Google Scholar 

  22. G. Zhu, A.C. Aurelia, Y. Liu, Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 12(6), 3086–3090 (2012)

    Article  Google Scholar 

  23. B. Kumar, K.Y. Lee, H.K. Park, S.J. Chae, Y.H. Lee, S.W. Kim, Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5(5), 4197–4204 (2011)

    Article  Google Scholar 

  24. B. Saravanakumar, S.J. Kim, Growth of 2D ZnO nanowall for energy harvesting application. J. Phys. Chem. 118(17), 8831–8836 (2014)

    Google Scholar 

  25. M.K. Gupta, J.H. Lee, K.Y. Lee, S.W. Kim, Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator. ACS Nano 7(10), 8932–8939 (2013)

    Article  Google Scholar 

  26. J.X. Lei, B. Yin, Y. Qiu, H.Q. Zhang, Y. Chang, Y.M. Luo, Y. Zhao, L.Z. Hu, Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure. J. Mater. Sci. Mater. Electron. 27(2), 1983–1987 (2016)

    Article  Google Scholar 

  27. B. Yin, Y. Qiu, H.Q. Zhang, J.Y. Ji, J.X. Lei, Y.M. Luo, Y. Zhao, L.Z. Hu, Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition. J. Mater. Sci. Mater. Electron. 26(8), 742–746 (2015)

    Article  Google Scholar 

  28. Y.C. Qiu, K.Y. Yan, H. Deng, S.H. Yang, Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 12(1), 407–413 (2012)

    Article  Google Scholar 

  29. B. Saravanakumar, R. Mohan, K. Thiyagarajan, S.J. Kim, Investigation of UV photoresponse property of Al, N Co-doped ZnO Film. J. Alloys Compd. 580, 538–543 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Project No. 61504018), the Doctoral Scientific Research Foundation of Liaoning Province (Project No. 201501193), General Project of Scientific Research of the Education Department of Liaoning Province (L2015040), Foundation of Key laboratory for Micro/Nano Technology and System of Liaoning and Province (20140405), the Fundamental Research Funds for the Central Universities (DUT15LAB15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dechao Yang or Yu Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Qiu, Y., Wang, T. et al. Growth of 3D branched ZnO nanowire for DC-type piezoelectric nanogenerators. J Mater Sci: Mater Electron 27, 6708–6712 (2016). https://doi.org/10.1007/s10854-016-4619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4619-x

Keywords

Navigation