Tensile creep behavior of Sn–Ag–Cu–Ni multicomponent lead-free solder alloy

  • N. Zhao
  • M. L. Huang
  • C. M. L. Wu


In the process of electronic packaging, the dissolution of under bump metallizations, such as Cu and Ni, into liquid solder occurs during soldering, which can change the original solder to a multicomponent one. Under the trend of miniaturization, it is quite necessary to evaluate the properties of multicomponent solder with excessive Cu and Ni compositions. In this study, the tensile creep behavior of Sn–3.5Ag–2.0Cu–0.5Ni multicomponent lead-free solder alloy is investigated at three temperatures, i.e., 303, 348 and 393 K. The steady-rate creep rates are obtained in the range of 10−4–10−8 s−1, when the normalized stress, σ/E, is in the range of 10−4–10−3. Based on the Dorn equation, the apparent stress exponent (n a), threshold stress (σ th), and activation energy of creep (Q C) are calculated at the three temperatures. It is found that the Sn–3.5Ag–2.0Cu–0.5Ni solder alloy shows a better creep performance than pure tin and eutectic Sn–3.5Ag solder due to the strengthening effect of Ag3Sn and (Cu,Ni)6Sn5 IMC precipitations. The true stress exponent for creep is identified to be 7, indicating that the creep behave is controlled by the dislocation-pipe diffusion in the tin matrix.


Solder Joint Solder Alloy Dislocation Climb Apparent Stress Exponent Average Ultimate Tensile Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No. 51301030), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120041120038) and the Fundamental Research Funds for the Central Universities (Grant Nos. DUT14QY45 and DUT15ZD239).


  1. 1.
    M. Sona, K.N. Prabhu, J. Mater. Sci. Mater. Electron. 24, 3149–3169 (2013)CrossRefGoogle Scholar
  2. 2.
    A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, J. Alloys Compd. 587, 32–39 (2014)CrossRefGoogle Scholar
  3. 3.
    N. Zhao, X.Y. Liu, M.L. Huang, H.T. Ma, J. Mater. Sci. Mater. Electron. 24, 3925–3931 (2013)CrossRefGoogle Scholar
  4. 4.
    S.W. Shin, J. Yu, J. Electron. Mater. 34, 188–195 (2005)CrossRefGoogle Scholar
  5. 5.
    W.J. Plumbridge, Solder. Surf. Mount Technol. 15, 26–30 (2003)CrossRefGoogle Scholar
  6. 6.
    D.K. Joo, J. Yu, S.W. Shin, J. Electron. Mater. 32, 541–547 (2003)CrossRefGoogle Scholar
  7. 7.
    P.T. Vianco, J.A. Pejent, A.C. Kilgo, J. Electron. Mater. 33, 1389–1400 (2004)CrossRefGoogle Scholar
  8. 8.
    V.M.F. Marques, B. Wunderle, C. Johnston, P.S. Grant, Acta Mater. 61, 2471–2480 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Terashima, S. Ishikawa, Mater. Trans. 56, 507–512 (2015)CrossRefGoogle Scholar
  10. 10.
    H.T. Ma, J. Mater. Sci. 44, 3841–3851 (2009)CrossRefGoogle Scholar
  11. 11.
    M. He, S.N. Ekpenuma, V.L. Acoff, J. Electron. Mater. 37, 300–306 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Y. Chen, S.L. Yu, Z. Sheng, Trans. Nonferrous Met. Soc. China 20, 412–417 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, J.G. Han, Y.H. Guo, L. Sun, J. Mater. Sci. Mater. Electron. 26, 3615–3620 (2015)CrossRefGoogle Scholar
  14. 14.
    F.X. Che, W.H. Zhu, E.S.W. Poh, X.R. Zhang, X.W. Zhang, T.C. Chai, S. Gao, J. Electron. Mater. 40, 344–354 (2011)CrossRefGoogle Scholar
  15. 15.
    A.A. El-Daly, A.M. El-Taher, Mater. Des. 51, 789–796 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Fawzy, S.A. Fayek, M. Sobhy, E. Nassr, M.M. Mousa, G. Saad, Mater. Sci. Eng. A 603, 1–10 (2014)CrossRefGoogle Scholar
  17. 17.
    W.M. Chen, S.C. Yang, M.H. Tsai, C.R. Kao, Scr. Mater. 63, 47–49 (2010)CrossRefGoogle Scholar
  18. 18.
    O.D. Sherby, J. Weertman, Acta Metall. 27, 387–400 (1979)CrossRefGoogle Scholar
  19. 19.
    P. Adeva, G. Caruanan, O.A. Ruano, M. Torralba, Mater. Sci. Eng. A 194, 17–23 (1995)CrossRefGoogle Scholar
  20. 20.
    V.I. Igoshev, J.I. Kleiman, J. Electron. Mater. 29, 244–250 (2000)CrossRefGoogle Scholar
  21. 21.
    V. Raman, R. Berriche, J. Mater. Res. 7, 627–638 (1992)CrossRefGoogle Scholar
  22. 22.
    M.L. Huang, C.M.L. Wu, J. Mater. Res. 17, 2897–2903 (2002)CrossRefGoogle Scholar
  23. 23.
    E. Arzt, D.S. Wilkinson, Acta Metall. 34, 1893–1898 (1986)CrossRefGoogle Scholar
  24. 24.
    E. Artz, J. Rösler, Acta Metall. 36, 1053–1060 (1988)CrossRefGoogle Scholar
  25. 25.
    J. Cadek, Creep in Metallic Materials (Elsevier, Amsterdam, The Netherlands, 1988), pp. 44–58 and 235–245Google Scholar
  26. 26.
    J. Cadek, K. Milicka, Scr. Mater. 37, 1039–1044 (1997)CrossRefGoogle Scholar
  27. 27.
    N.A. Gjostein, in Diffusion, ed. by H.I. Aaronson (ASM, Materials Park, 1973), p. 241Google Scholar
  28. 28.
    O.D. Sherby, M.T. Simnad, Trans. ASM 54, 227–240 (1961)Google Scholar
  29. 29.
    J.D. Meakin, E. Klokholm, Trans. Metall. Soc. AIME 218, 463–466 (1960)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Electronic Packaging Materials Laboratory, School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Physics and Materials ScienceCity University of Hong KongKowloon TongChina

Personalised recommendations