Skip to main content
Log in

Dielectric behavior of β-SiC nanopowders in air between 30 and 400 °C

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) is regarded as a semiconductor and thus characterized mainly for its electrical conductivity. However, SiC does exhibit significant electrical resistance at low ambient temperatures and represents a possible dielectric insulator. In this paper, the dielectric properties of the β-SiC nanopowders were examined by X-ray diffraction and dielectric spectroscopy within the humid Malaysian environment. Research emphasis is placed on the stable dielectric behavior of the nanopowder itself as the nanopowder phase is susceptible to hydroxyl oxidization as mentioned by the nanopowder manufacturer. The XRD results identified the presence of β-SiC peaks whereas EDX detected minor oxygen presence in the nanopowder. Dielectric permittivity response of the nanopowder pellet indicated stable Quasi-DC dielectric behavior from 30 to 400 °C with minor increments of the initial relative dielectric permittivity at the lower temperatures. The relative dielectric permittivity of the SiC nanoparticles was determined to be 44 (30 °C) to 31 (400 °C) at 1 MHz. Arrhenius plot of the dielectric data resulted in a two linear energy activation plots due to possible hopping mechanisms within the SiC nanoparticles covalent structure. Overall, the β-SiC nanopowder exhibited a stable Quasi-DC behavior at the measured temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976), pp. 44–45

    Google Scholar 

  2. A.A. Sagues, J.T. Wolan, A. De Fex, T.J. Fawcett, Electrochim. Acta 51(8–9), 1656–1663 (2006)

    Article  Google Scholar 

  3. Y. Li, J. Yin, H. Wu, H. Deng, J. Chen, Y. Yan, X. Liu, Z. Huang, D. Jiang, J. Euro. Ceram. Soc. 35, 1647–1652 (2015)

    Article  Google Scholar 

  4. J.G. Lee, S.P. Lee, Sensor Actuat. B 117, 437–441 (2006)

    Article  Google Scholar 

  5. E. Arslan, Y. Safak, I. Tascioglu, H. Uslu, E. Ozbay, Microelectron. Eng. 87, 1997–2001 (2010)

    Article  Google Scholar 

  6. T. Sugino, T. Tai, Y. Etou, Diam. Relat. Mater. 10, 1375–1379 (2001)

    Article  Google Scholar 

  7. H. Aoki, H. Shima, C. Kimura, T. Sugino, Diam. Relat. Mater. 16, 1300–1303 (2007)

    Article  Google Scholar 

  8. D. Hofman, J.A. Lely, J. Volger, The dielectric constant of SiC. Physica 23, 236 (1967)

    Article  Google Scholar 

  9. L. Patrick, W.J. Choyke, Static dielectric constant of SiC. Phys. Rev. B. 2, 2255 (1970)

    Article  Google Scholar 

  10. O. Chuvert, T. Stoto, L. Zuppiroli, Phys. Rev. B. 46, 8139 (1992)

    Article  Google Scholar 

  11. D. Zhao, H. Zhao, W. Zhou, Phys. E 9, 679–685 (2001)

    Article  Google Scholar 

  12. J. Sun, J. Li, G. Sun, B. Zhang, S. Zhang, H. Zhai, Ceram. Int. 28, 741–745 (2002)

    Article  Google Scholar 

  13. X. Su, W. Zhou, J. Xu, Z. Li, F. Luo, D. Zhu, J. Alloys Compd. 402, L16–L19 (2010)

    Article  Google Scholar 

  14. X. Su, W. Zhou, J. Xu, Z. Li, F. Luo, D. Zhu, Mater. Res. Bull. 44, 880–883 (2009)

    Article  Google Scholar 

  15. H. Liu, H. Tian, J. Eur, Ceram. Soc. 32, 2505–2512 (2012)

    Article  Google Scholar 

  16. S. Kasahara, Y. Katano, S. Shimanuki, K. Nakata, H. Ohno, J. Nucl. Mater. 191–194, 579–582 (1992)

    Article  Google Scholar 

  17. J.S. Gonzalez, A.L. Ortiz, F. Guiberteau, C. Pascual, J. Eur. Ceram. Soc. 27, 3935–3939 (2007)

    Article  Google Scholar 

  18. S. Li, N. Wang, H. Zhao, L. Du, Mater. Lett. 126, 217–219 (2014)

    Article  Google Scholar 

  19. K.J. Kim, K. Lim, Y. Kim, M. Lee, W. Seo, J. Eur. Ceram. Soc. 34, 1695–1701 (2014)

    Article  Google Scholar 

  20. K.J. Kim, K. Lim, Y. Kim, J. Eur. Ceram. Soc. 32, 4401–4406 (2012)

    Article  Google Scholar 

  21. http://www.us-nano.com/inc/sdetail/373

  22. D.K. Das-Gupta, P.C.N. Scarpa, Handbook of low and high dielectric constant materials and their applications, vol. 2, in Phenomena, Properties and Applications, ed. by H.S. Nalwa (Academic Press, San Diego, 1999), pp. 289–316

    Google Scholar 

  23. S. Agathopoulos, Ceram. Int. 38, 3309–3315 (2012)

    Article  Google Scholar 

  24. O. Chauvet, I. Solomon, L. Zuppiroli, Mater. Sci. Eng., B 11, 303–306 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Malaysian Ministry of Education for providing financial aid for this research under the Research University Grant Scheme Project Code 05-01-12-1635RU. We also thank the Department of Physics, Faculty of Science, UPM and the Institute of Advanced Material (ITMA), UPM for assistance in the technical and sample preparation stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex See.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

See, A., Hassan, J., Hashim, M. et al. Dielectric behavior of β-SiC nanopowders in air between 30 and 400 °C. J Mater Sci: Mater Electron 27, 6623–6629 (2016). https://doi.org/10.1007/s10854-016-4608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4608-0

Keywords

Navigation