Advertisement

Thermally stable Ba0.8Ca0.2TiO3–Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range

  • Guisheng Huang
  • Xiuli Chen
  • Dandan Ma
  • GaoFeng Liu
  • Huanfu Zhou
Article

Abstract

Lead-free (1−x)Ba0.8Ca0.2TiO3xBi(Mg0.5Zr0.5)O3 [(1−x)BCT–xBMZ, 0 ≤ x ≤ 0.3] ceramics were fabricated via a conventional solid-state reaction method. The structure and dielectric properties of BCT–BMZ ceramics were systematically investigated. X-ray diffraction patterns and Raman spectra show that a systematically structural change form a tetragonal to pseudo-cubic phase occurred at about x = 0.06–0.08. As x values increased to 0.3, the temperature stability of permittivity of ceramics was markedly increased (Δε/ε 27 °C ≤ ±15 %) and low dielectric loss (≤2 %) was obtained over a wide temperature range from 27 to 290 °C at 1 kHz. These results indicate that (1−x)BCT–xBMZ ceramics are promising candidates for thermally stabile devices.

Keywords

BaTiO3 Broad Temperature Range Polymorphic Phase Transition BiScO3 Temperature Usage Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 11364012 and 11464009), Natural Science Foundation of Guangxi (Nos. 2013GXNSFAA019291, 2014GXNSFAA118326, and 2014GXNSFAA118312), Project of Guangxi Scientific Research and Technical Development (No. 1348020-11).

References

  1. 1.
    A. Zeb, S.J. Miline, J. Eur. Ceram. Soc. 34, 1727–1732 (2014)CrossRefGoogle Scholar
  2. 2.
    J.B. Lim, S.J. Zhang, N. Kim, T.R. Shrout, J. Am. Ceram. Soc. 92, 679–682 (2009)CrossRefGoogle Scholar
  3. 3.
    R. Dittmer, E.M. Anton, W. Jo, H. Simons, J.E. Daniels, M. Hoffman, J. Pokorny, L.M. Reaney, J. Rödel, J. Am. Ceram. Soc. 95, 3519–3524 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Xiong, H. Hao, S. Zhang, H.X. Liu, M.H. Cao, Structure. J. Am. Ceram. Soc. 94, 3412–3417 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Wang, H. He, H. Su, J. Mater. Sci.: Mater. Electron. 24, 2385–2389 (2013)Google Scholar
  6. 6.
    Y. Yuan, M. Du, S. Zhang, J. Mater. Sci.: Mater. Electron. 20, 157–162 (2009)Google Scholar
  7. 7.
    J. Chen, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 72, 593–598 (2005)CrossRefGoogle Scholar
  8. 8.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)CrossRefGoogle Scholar
  9. 9.
    B.A. Tuttle, D.A. Payne, Ferroelectrics 37, 603–606 (1981)CrossRefGoogle Scholar
  10. 10.
    D. Bochenek, R. Skulski, P. Wawrzala, D. Brzezinska, J. Alloys Compd. 509, 5356–5363 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Wongsaenmai, S. Ananta, R. Yimnirun, J. Alloys Compd. 474, 241–245 (2009)CrossRefGoogle Scholar
  12. 12.
    J.Y. Xu, M. Jin, J. Tong, M.L. Shi, X.J. Wu, B.L. Lu, L.Q. Luo, J. Alloys Compd. 449, 36–39 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Wongsaenmai, X.L. Tan, S. Ananta, R. Yimnirun, J. Alloys Compd. 454, 331–339 (2008)CrossRefGoogle Scholar
  14. 14.
    N. Raengthon, D.P. Cann, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1954–1958 (2011)CrossRefGoogle Scholar
  15. 15.
    Y.M. Han, L.X. Li, F. Wang, Y.J. Yuan, Y.P. Miao, J.S. Zhao, K.L. Zhang, J. Mater. Sci.: Mater. Electron. 26, 8261–8266 (2015)Google Scholar
  16. 16.
    N. Raengthon, T. Sebastian, D. Cumming, I.M. Reancy, D.P. Cann, J. Am. Ceram. Soc. 95, 3554–3561 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Chen, X.L. Chen, H. Fen, Y.L. Wang, H.F. Zhou, L. Fan, J. Electron. Mater. 43, 1112–1118 (2015)CrossRefGoogle Scholar
  18. 18.
    L.X. Li, J.Y. Yu, N. Zhang, J. Ye, J. Mater. Sci.: Mater. Electron. 26, 9522–9528 (2015)Google Scholar
  19. 19.
    Q. Zhang, Z.R. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94, 4335–4339 (2011)CrossRefGoogle Scholar
  20. 20.
    X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, Ceram. Int. 41, 2081–2088 (2015)CrossRefGoogle Scholar
  21. 21.
    L.L. Zhang, X.S. Wang, H. Liu, X. Yao, J. Am. Ceram. Soc. 93, 1049–1055 (2010)CrossRefGoogle Scholar
  22. 22.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 93, 2942–2944 (2010)CrossRefGoogle Scholar
  23. 23.
    Y.S. Tian, Y.S. Gong, D.W. Meng, H. Deng, B. Kuang, J. Mater. Sci.: Mater. Electron. 26, 3750–3756 (2015)Google Scholar
  24. 24.
    A. Zeb, S.J. Milne, J. Am. Ceram. Soc. 96, 2887–2892 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Bhardwaj, B. Daniel, D. Kaur, J. Phys. Chem. Solids 74, 94–100 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Li, K. Yang, R.Z. Xue, Y.C. Xue, Z.P. Chen, J. Mater. Sci.: Mater. Electron. 22, 838–842 (2011)Google Scholar
  27. 27.
    Y.S. Tian, Y.S. Gong, Z.L. Zhang, D.W. Meng, J. Mater. Sci.: Mater. Electron. 25, 5467–5474 (2014)Google Scholar
  28. 28.
    K. Suzuki, K. Kijima, J. Mater. Sci. 40, 1289–1292 (2005)CrossRefGoogle Scholar
  29. 29.
    C.C. Huang, D.P. Cann, X.L. Tan, N. Vittayakorn, J. Appl. Phys. 102, 044103 (2007)CrossRefGoogle Scholar
  30. 30.
    R.D.J. Shannon, Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  31. 31.
    D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313–3318 (2003)CrossRefGoogle Scholar
  32. 32.
    J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)CrossRefGoogle Scholar
  33. 33.
    S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, Y.M. Huang, L.L. Fan, J. Appl. Phys. 113, 094102 (2013)CrossRefGoogle Scholar
  34. 34.
    X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, J. Am. Ceram. Soc. 98, 804–810 (2014)CrossRefGoogle Scholar
  35. 35.
    M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, J. Am. Ceram. Soc. 90, 120–124 (2007)CrossRefGoogle Scholar
  36. 36.
    H. Yu, Z.G. Ye, J. Appl. Phys. 103, 034114 (2008)CrossRefGoogle Scholar
  37. 37.
    Z. Chen, G.Z. Li, X.J. Sun, L.J. Liu, L. Fang, Ceram. Int. 41, 11057–11061 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Guisheng Huang
    • 1
  • Xiuli Chen
    • 1
  • Dandan Ma
    • 1
  • GaoFeng Liu
    • 1
  • Huanfu Zhou
    • 1
  1. 1.Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations