Efficient photo catalytic degradation of methyl orange over Ag–CuO nanostructures grown on copper foil under visible light irradiation

  • Mohamad Mohsen Momeni
  • Mahboubeh Mirhosseini
  • Narjes Mohammadi


A novel and efficient photo catalyst was synthesized for the photo degradation of methyl orange. CuO nanostructures were grown on copper foil as substrate via a simple cost-effective wet-chemical route and used as templates for making silver-deposited CuO samples. Silver were deposited over the surfaces of CuO nanostructures through a photochemical deposition process. The resulting samples were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectrometer methods. SEM images show formation of film containing sheet-like structures with thickness of about 20–50 nm and nanorod-like structures with the diameter and length of 40–70 and 100–500 nm, respectively. The photo-catalytic activity of samples was evaluated by monitoring the photo-degradation of methyl orange. Results demonstrated that the rate of degradation of the silver-deposited CuO sample was more than 4.4 times faster than pure CuO nanostructures. The Ag–CuO catalysts prepared in this study exhibit industrially relevant interests due to the low cost, high photo catalytic activity and high stability.


Methyl Orange Copper Foil Methyl Orange Degradation Photo Catalyst Photo Catalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Li, Y. Wang, Superlattices Microstruct. 47, 615 (2010)CrossRefGoogle Scholar
  2. 2.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  3. 3.
    P.D. Cozzoli, E. Fanizza, R. Comparelli, M.L. Curri, A. Agostiano, D. Laub, J. Phys. Chem. B 108, 9623 (2004)CrossRefGoogle Scholar
  4. 4.
    T.L. Thompson, J.T. Yates Jr, Chem. Rev. 106, 4428 (2006)CrossRefGoogle Scholar
  5. 5.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. Int. Ed. 46, 4630 (2007)CrossRefGoogle Scholar
  7. 7.
    H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011)CrossRefGoogle Scholar
  8. 8.
    J.N. Tiwari, R.N. Tiwari, K.S. Kim, Prog. Mater. Sci. 57, 724 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Prog. Mater. Sci. 55, 563 (2010)CrossRefGoogle Scholar
  10. 10.
    E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Prog. Mater. Sci. 54, 1 (2009)CrossRefGoogle Scholar
  11. 11.
    Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C. Shek, Chem. Rev. 112, 3833 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Elst, Chem. Rev. 108, 2064 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Li, G. Somorjai, Nano Lett. 10, 2289 (2010)CrossRefGoogle Scholar
  14. 14.
    D.P. Singh, N. Ali, Sci. Adv. Mater. 2, 295 (2010)CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater. Sci. 60, 208 (2014)CrossRefGoogle Scholar
  16. 16.
    P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Chem. Eng. J. 171, 136 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Appl. Surf. Sci. 307, 280 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Wanga, T. Jianga, D. Menga, D. Wanga, M. Yu, Appl. Surf. Sci. 355, 191 (2015)CrossRefGoogle Scholar
  19. 19.
    M.M. Momeni, Appl. Phys. A 119, 1413 (2015)CrossRefGoogle Scholar
  20. 20.
    M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Ceram. Int. 41, 8735 (2015)CrossRefGoogle Scholar
  21. 21.
    M.M. Momeni, Appl. Surf. Sci. 357, 160 (2015)CrossRefGoogle Scholar
  22. 22.
    M.M. Momeni, Y. Ghayeb, J. Mater. Sci.: Mater. Electron. 27, 1062 (2016)Google Scholar
  23. 23.
    M.M. Momeni, Y. Ghayeb, J. Iran. Chem. Soc. 13, 481 (2016)CrossRefGoogle Scholar
  24. 24.
    Q. Wang, B.Y. Geng, S.Z. Wang, Environ. Sci. Technol. 43, 8968 (2009)CrossRefGoogle Scholar
  25. 25.
    Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, J.F. Zhu, J. Phys. Chem. C 112, 10773 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Ghosh, V.S. Goudar, K.G. Padmalekha, S.V. Bhat, S.S. Indi, H.N. Vasan, RSC Adv. 2, 930 (2012)CrossRefGoogle Scholar
  27. 27.
    Y.C. Yang, J.W. Wen, J.H. Wei, R. Xiong, J. Shi, C.X. Pan, ACS Appl. Mater. Interfaces 5, 6201 (2013)CrossRefGoogle Scholar
  28. 28.
    X. Liu, Z. Li, C. Zhao, W. Zhao, J. Yang, Y. Wang, F. Li, J. Colloid Interface Sci. 419, 9 (2014)CrossRefGoogle Scholar
  29. 29.
    D.D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21, 3479 (2009)CrossRefGoogle Scholar
  30. 30.
    Z.J. Zhang, W.Z. Wang, E.P. Gao, S.M. Sun, L. Zhang, J. Phys. Chem. C 116, 25898 (2012)CrossRefGoogle Scholar
  31. 31.
    Q. Deng, X.W. Duan, H.L. Ng, ACS Appl. Mater. Interfaces 4, 6030 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohamad Mohsen Momeni
    • 1
  • Mahboubeh Mirhosseini
    • 2
    • 3
  • Narjes Mohammadi
    • 2
    • 3
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Department of BiologyPayame Noor UniversityTehranIran
  3. 3.Department of BiologyPayame Noor University, Iran Nano Structured Coatings Institute, Yazd Payame Noor UniversityYazdIran

Personalised recommendations