Structural and optical properties of the Fe-doped BaTiO3 thin films grown on LaAlO3 by polymer-assisted deposition technique

  • Yuxuan Wang
  • Weizheng Liang
  • Wen Huang
  • Min Gao
  • Yin Zhang
  • Yuan Lin


Fe-doped BaTiO3 thin films were grown on (001) oriented LaAlO3 substrates using a polymer-assisted deposition technique. The microstructural and chemical state characters of the films with the Fe doping range from 1 to 10 at% were systematically investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Evolution of the preferred orientation and strain status of BaTiO3 films could be observed with increasing doping amount of Fe. Meanwhile, UV–Vis spectra of doped BaTiO3 thin films showed that the band gap could be strongly affected by the doping amount of Fe with the smallest value at the Fe doping rate of 3 at%, which is proposed to be associated with the inevitable oxygen vacancies and the substitution of Ti ions by the Fe dopants.


Oxygen Vacancy BaTiO3 BiFeO3 LaAlO3 Doping Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2015CB351905, the National Natural Science Foundation of China (Nos. 51372034, 11329402 and 51172036), the Technology Innovative Research Team of Sichuan Province of China (No. 2015TD0005), and “111” project (No. B13042).


  1. 1.
    W. Ji, K. Yao, Y.C. Liang, Adv. Mater. 22, 1763 (2010)CrossRefGoogle Scholar
  2. 2.
    D. Cao, C. Wang, F. Zheng, W. Dong, L. Fang, M. Shen, Nano Lett. 12, 2803 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Choi, S. Lee, Y. Choi, V. Kiryukhin, S.-W. Cheong, Science 324, 63 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Xing, K.-J. Jin, H. Lu et al., Appl. Phys. Lett. 92, 71113 (2008)CrossRefGoogle Scholar
  6. 6.
    K.-I. Yamanaka, T. Ohwaki, T. Morikawa, J. Phys. Chem. C 117, 16448 (2013)CrossRefGoogle Scholar
  7. 7.
    R. Liu, P. Wang, X. Wang, H. Yu, J. Yu, J. Phys. Chem. C 116, 17721 (2012)CrossRefGoogle Scholar
  8. 8.
    F. Pontes, D. Pontes, A. Chiquito, M.A. Pereira-da-Silva, E. Longo, Mater. Lett. 138, 179 (2015)CrossRefGoogle Scholar
  9. 9.
    R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969)CrossRefGoogle Scholar
  10. 10.
    S. Upadhyay, J. Shrivastava, A. Solanki et al., J. Phys. Chem. C 115, 24373 (2011)CrossRefGoogle Scholar
  11. 11.
    I.E. Grey, C. Li, L.M. Cranswick, R.S. Roth, T.A. Vanderah, J. Solid State Chem. 135, 312 (1998)CrossRefGoogle Scholar
  12. 12.
    Y. Lin, H. Wang, M. Hawley et al., Appl. Phys. Lett. 85, 3426 (2004)CrossRefGoogle Scholar
  13. 13.
    Y. Lin, J.-S. Lee, H. Wang et al., Appl. Phys. Lett. 85, 5007 (2004)CrossRefGoogle Scholar
  14. 14.
    W. Liang, Y. Ji, T. Nan et al., ACS Appl. Mater. Interfaces 4, 2199 (2012)CrossRefGoogle Scholar
  15. 15.
    Q.X. Jia, T.M. McCleskey, A. Burrell et al., Nat. Mater. 3, 529 (2004)CrossRefGoogle Scholar
  16. 16.
    W. Liang, Z. Li, Z. Bi et al., J. Mater. Chem. C 2, 708 (2014)CrossRefGoogle Scholar
  17. 17.
    W. Liang, Y. Ji, C. Nan et al., Chin. Phys. B 21, 067701 (2012)CrossRefGoogle Scholar
  18. 18.
    L. Da Silva, M. Bernardi, L. Maia, G. Frigo, V. Mastelaro, J. Therm. Anal. Calorim. 97, 173 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Ihrig, J. Phys. C Solid State Phys. 11, 819 (1978)CrossRefGoogle Scholar
  20. 20.
    C. Park, D. Chadi, Phys. Rev. B 57, R13961 (1998)CrossRefGoogle Scholar
  21. 21.
    R. Maier, J. Cohn, J. Appl. Phys. 92, 5429 (2002)CrossRefGoogle Scholar
  22. 22.
    W. Eerenstein, F. Morrison, J. Dho, M. Blamire, J. Scott, N. Mathur, Science 307, 1203 (2005)CrossRefGoogle Scholar
  23. 23.
    H. Jena, V. Mittal, S. Bera, S. Narasimhan, K.G. Kutty, T. Kutty, Appl. Surf. Sci. 254, 7074 (2008)CrossRefGoogle Scholar
  24. 24.
    H.A. Bullen, S.J. Garrett, Nano Lett. 2, 739 (2002)CrossRefGoogle Scholar
  25. 25.
    L. Zhang, Z.-J. Tang, Phys. Rev. B 70, 174306 (2004)CrossRefGoogle Scholar
  26. 26.
    V. Sharma, G. Pilania, G. Rossetti Jr, K. Slenes, R. Ramprasad, Phys. Rev. B 87, 134109 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Saha, T. Sinha, A. Mookerjee, Phys. Rev. B 62, 8828 (2000)CrossRefGoogle Scholar
  28. 28.
    J. Singh, P. Srivastava, P. Siwach, H. Singh, R. Tiwari, O. Srivastava, Sci. Adv. Mater. 4, 467 (2012)CrossRefGoogle Scholar
  29. 29.
    T.P. Rao, M.S. Kumar, S.A. Angayarkanni, M. Ashok, J. Alloys Compd. 485, 413 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yuxuan Wang
    • 1
  • Weizheng Liang
    • 1
  • Wen Huang
    • 1
  • Min Gao
    • 1
  • Yin Zhang
    • 1
  • Yuan Lin
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations