IVT measurements of GaN power Schottky diodes with drift layers grown by HVPE on HVPE GaN substrates

  • R. P. Tompkins
  • M. R. Khan
  • R. Green
  • K. A. Jones
  • J. H. Leach


To date, a majority of epitaxial layers for vertical gallium nitride (GaN) power Schottky diodes have been grown by metalorganic chemical vapor deposition. In this work, we investigate the electrical properties of vertical GaN Schottky diodes with drift layers grown by hydride vapor phase epitaxy (HVPE) on moderately-doped freestanding HVPE GaN substrates. Room temperature IV data is presented for devices tested where results for diode characteristics such as the breakdown voltage, Vb, specific on-resistance, Ron-sp, ideality factor, n, and barrier height, Φb, are measured for devices across the 1 cm × 1 cm sample. The smallest diodes, which are 30 μm in diameter, show the smallest specific on-resistance, whereas the breakdown voltage (defined as the voltage corresponding to a current of 10 mA cm−2) is independent of device size across the wafer. IV data show an average value of 1.06 ± 0.06 for n and 0.80 ± 0.04 eV for Φb with little variation across the wafer, suggesting a reasonable metal–semiconductor interface across the entire sample. For one of the 300 μm devices tested, we also examine the IV properties as function of temperature from 25 to 250 °C in increments of 25 °C and extract a zero temperature Φb of 0.908 eV and Richardson’s constant of 4.44 A cm−2 K−2 which is significantly less than the theoretical value of 26.9 A cm−2 K−2.


Thermionic Emission Breakdown Voltage Ideality Factor Schottky Diode Schottky Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, New York, 2008), p. 15CrossRefGoogle Scholar
  2. 2.
    R.P. Tompkins, T.A. Walsh, M.A. Derenge, K.W. Kirchner, C.B. Nguyen, K.A. Jones, P. Suvarna, M. Tungare, N. Tripahi, F. Shahedipour-Sandvik, J. Mater. Res. 26(23), 2895 (2011)CrossRefGoogle Scholar
  3. 3.
    Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, T. Nakamura, Appl. Phys. Exp. 3, 081001 (2010)CrossRefGoogle Scholar
  4. 4.
    I.C. Kizilyalli, A.P. Edwards, H. Nie, D. Disney, D. Bour, IEEE Trans. Electron Devices 60, 3067 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, J. Cryst. Growth 311, 3011 (2009)CrossRefGoogle Scholar
  6. 6.
    S.K. Mathis, A.E. Romanov, L.F. Chen, G.E. Beltz, W. Pompe, J.S. Speck, Phys. Status Solidi A 179, 125–145 (2000)CrossRefGoogle Scholar
  7. 7.
    M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Muka, J. Appl. Phys. 45, L659 (2006)CrossRefGoogle Scholar
  8. 8.
    R.P. Tompkins, T.A. Walsh, M.A. Derenge, K.W. Kirchner, S. Zhou, C.B. Nguyen, K.A. Jones, G. Mulholland, R. Metzger, J.H. Leach, P. Suvarna, M. Tungare, F. Shahedipour-Sandvik, Solid State Electron. 79, 238 (2013)CrossRefGoogle Scholar
  9. 9.
    G.S. Sudhir, Y. Peyrot, J. Krüger, Y. Kim, R. Klockenbrink, C. Kiesielowski, M.D. Rubin, E.R. Weber, W. Kriegseis, B.K. Meyer, Mater. Res. Soc. Symp. Proc. 482, 525 (1998)CrossRefGoogle Scholar
  10. 10.
    A. Cremades, L. Görgens, O. Ambacher, M. Stutzmann, F. Scholz, Phys. Rev. B 61, 2812 (2000)CrossRefGoogle Scholar
  11. 11.
    L.T. Romano, C.G. Van de Walle, J.W. Ager III, W. Götz, R.S. Kern, J. Appl. Phys. 87, 7745 (2000)CrossRefGoogle Scholar
  12. 12.
    J.D. Wiley, G.L. Miller, IEEE Trans. Electron Devices 22, 265 (1975)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, S. Alur, Y. Sharma, F. Tong, R. Thapa, P. Gartland, T. Issacs-Smith, C. Ahyi, J. Williams, M. Park, M. Johnson, T. Paskova, E. Preble, K. Evans, Semicond. Sci. Technol. 26, 022002 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, H. Xu, S. Alur, Y. Sharma, F. Tong, P. Gartland, T. Issacs-Smith, C. Ahyi, J. Williams, M. Park, G. Wheeler, M. Johnson, A. Allerman, A. Hanser, T. Paskova, E.A. Preble, K. Evans, Phys. Status Solidi C 8, 2430 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Zhou, D. Wang, C. Ahyi, C. Tin, J. Williams, M. Park, N. Williams, A. Hanser, Solid State Electon. 50, 1744 (2006)CrossRefGoogle Scholar
  16. 16.
    B.J. Zhang, T. Egawa, G.Y. Zhao, H. Ishikawa, M. Umeno, T. Jimbo, Appl. Phys. Lett. 79, 2567 (2001)CrossRefGoogle Scholar
  17. 17.
    R.P. Tompkins, J.R. Smith, K.W. Kirchner, K.A. Jones, J.H. Leach, K. Udwary, E. Preble, P. Suvarna, J.M. Leathersich, F. Shahedipour-Sandvik, J. Electron. Mater. 43, 850 (2014)CrossRefGoogle Scholar
  18. 18.
    J.W. Johnson, F.R. LaRoch, F. Ren, B.P. Gila, M.E. Overberg, C.R. Abernathy, J.I. Chyi, C.C. Chuo, T.E. Nee, C.M. Lee, K.P. Lee, S.S. Park, Y.J. Park, S.J. Pearton, Solid State Electron. 45, 405 (2001)CrossRefGoogle Scholar
  19. 19.
    J.W. Johnson, A.P. Zhang, W.B. Luo, F. Ren, S.J. Pearton, S.S. Park et al., IEEE Trans. Electron Devices 49, 504 (2002)CrossRefGoogle Scholar
  20. 20.
    K. Suzue, S.N. Mohammad, Z.F. Fan, W. Kim, O. Aktas, A.E. Botchkarev, H. Morkoc, J. Appl. Phys. 80(8), 4467 (1996)CrossRefGoogle Scholar
  21. 21.
    A.M. Witowski, K. Pakula, J.M. Baranowski, M.L. Sadowski, P. Wyder, Appl. Phys. Lett. 75, 4154 (1999)CrossRefGoogle Scholar
  22. 22.
    Z. Xiaoling, L. Fei, L. Changzhi, X. Xuesong, L. Ying, S.N. Mohammad, J. Semicond. 30, 034001 (2009)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    A.M. Witowski, K. Pakula, J.M. Baranowski, M.L. Sadowski, P. Wyder, Appl. Phys. Lett. 75, 4145 (1999)CrossRefGoogle Scholar
  25. 25.
    J.D. Guo, F.M. Pan, M.S. Feng, R.J. Guo, P.F. Chou, C.Y. Chang, J. Appl. Phys. 80, 1623 (1996)CrossRefGoogle Scholar
  26. 26.
    L.S. Yu, Q.Z. Liu, J. Xing, D.J. Qiao, S.S. Lau, J. Redwing, J. Appl. Phys. 84, 2099 (1998)CrossRefGoogle Scholar
  27. 27.
    P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, Appl. Phys. Lett. 63, 2676 (1993)CrossRefGoogle Scholar
  28. 28.
    S. Dogan, S. Duman, B. Gurbulak, S. Tuzemen, H. Morkoc, Phys. E 41, 646 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • R. P. Tompkins
    • 1
  • M. R. Khan
    • 1
  • R. Green
    • 1
  • K. A. Jones
    • 1
  • J. H. Leach
    • 2
  1. 1.U.S. Army Research LaboratoryAdelphiUSA
  2. 2.Kyma TechnologiesRaleighUSA

Personalised recommendations