Effect of nano-TiO2 addition on microstructural evolution of small solder joints

  • Z. L. Li
  • G. Y. Li
  • L. X. Cheng
  • J. H. Huang


The influence of TiO2 addition on the interfacial reaction in Sn–3.0Ag–0.5Cu solder joints with the pad size of 200 µm was investigated in this study. The microstructure of the solder joints and the interfacial intermetallic layers were analyzed by scanning electron microscope. Results show that both the thickness and grain size of the intermetallic compound (IMC) decreases when TiO2 is added. The Sn–3.0Ag–0.5Cu–0.1TiO2 solder exhibits the most prominent effect in retarding interfacial IMC growth and refining IMC grain size. It is observed that the scallop morphology became more faceted in shape compared with the large size Cu/solder interface, where the Cu6Sn5 grains appear to be round shape no matter the reflow time is long or short. The cause might be due to the change in interfacial energy between the molten solder and Cu6Sn5 phase, which is highly correlated with the Cu concentration profile near the interface in the side of the liquid solder.


TiO2 Solder Joint Solder Ball Composite Solder Molten Solder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by the Planned Science and Technology Project of Guangdong Province, China (No. 2013B010403003). The authors would like to acknowledge the support of the National Natural Science Foundation of Guangdong, China (No. 2014A030313594), and the Planned Science and Technology Project of Guangdong Province, China (No. 2015A020209179).


  1. 1.
    P. Hedge, D.C. Whalley, V.V. Silberschmidt, in European Microelectronics and Packaging Conference (IEEE, Rimini, 2009), pp. 1–9Google Scholar
  2. 2.
    A. Lalonde et al., J. Electron. Mater. 33, 1545 (2004)CrossRefGoogle Scholar
  3. 3.
    L.M. Yin, W.Y. Li, S. Wei, Z.L. Xu, in 12th International Conference on Electronic Packaging Technology and High Density Packaging (IEEE, Shanghai, 2011), pp. 832–834Google Scholar
  4. 4.
    S.C. Yang, C.C. Chang, M.H. Tsai, C.R. Kao, J. Alloys Compd. 499, 149 (2010)CrossRefGoogle Scholar
  5. 5.
    M.N. Islam, A. Sharif, Y.C. Chan, J. Electron. Mater. 34, 143 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Sharif, Y.C. Chan, R.A. Islam, Mater. Sci. Eng. B 106, 120 (2004)CrossRefGoogle Scholar
  7. 7.
    Y.S. Park, et al., in Proceedings of the 60th Electronic Components and Technology Conference (IEEE, Nevada, 2010), pp. 1436–1441Google Scholar
  8. 8.
    M.L. Huang and F. Yang, Sci. Rep.UK 4, 7117, (2014)Google Scholar
  9. 9.
    L. Yin, S. Wei, Z. Xu, Y. Geng, J. Mater. Sci. Mater. Electron. 24, 1369 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Tang, G.Y. Li, Y.C. Pan, Mater. Des. 55, 574 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Fouzder et al., J. Alloys Compd. 509, 1885 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Shen, Y.C. Liu, D.J. Wang, H.X. Gao, J. Mater. Sci. Technol. 22, 529 (2006)CrossRefGoogle Scholar
  13. 13.
    H. Mavoori, S. Jin, J. Electron. Mater. 27, 1216 (1998)CrossRefGoogle Scholar
  14. 14.
    L.C. Tsao et al., Mater. Des. 31, 4831 (2010)CrossRefGoogle Scholar
  15. 15.
    L.C. Tsao, S.Y. Chang, Mater. Des. 31, 990 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Tang, G.Y. Li, D.Q. Chen, Y.C. Pan, J. Mater. Sci. Mater. Electron. 25, 981 (2014)CrossRefGoogle Scholar
  17. 17.
    N.M. Nasir et al., Mater. Sci. Forum 803, 273 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Tang et al., J. Mater. Sci. Mater. Electron. 26, 3196 (2015)CrossRefGoogle Scholar
  19. 19.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 975 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Tang, G.Y. Li, Y.C. Pan, J. Alloys Compd. 554, 195 (2013)CrossRefGoogle Scholar
  21. 21.
    L.C. Tsao, M.W. Wu, S.Y. Chang, J. Mater. Sci. Mater. Electron. 23, 681 (2012)CrossRefGoogle Scholar
  22. 22.
    C.C. Chang, Y.W. Lin, Y.W. Wang, C.R. Kao, J. Alloys Compd. 492, 99 (2010)CrossRefGoogle Scholar
  23. 23.
    K. Zeng et al., J. Appl. Phys. 97, 24508 (2005)CrossRefGoogle Scholar
  24. 24.
    J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223 (2009)CrossRefGoogle Scholar
  25. 25.
    Y. Li, Y.C. Chan, J. Alloys Compd. 645, 566 (2015)CrossRefGoogle Scholar
  26. 26.
    L.C. Tsao, J. Alloys Compd. 509, 2326 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Chada, W. Laub, R.A. Fournelle, D. Shangguan, J. Electron. Mater. 28, 1194 (1999)CrossRefGoogle Scholar
  28. 28.
    G.Y. Li, B.L. Chen, J.N. Tey, IEEE Trans. Electron. Packag. Manuf. 27, 77 (2004)CrossRefGoogle Scholar
  29. 29.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)CrossRefGoogle Scholar
  30. 30.
    K.W. Moon et al., J. Electron. Mater. 29, 1122 (2000)CrossRefGoogle Scholar
  31. 31.
    C.K. Wong et al., Microelectron. Reliab. 48, 611 (2008)CrossRefGoogle Scholar
  32. 32.
    J.O. Suh, K.N. Tu, G.V. Lutsenko, A.M. Gusak, Acta Mater. 56, 1075 (2008)CrossRefGoogle Scholar
  33. 33.
    K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93, 1335 (2003)CrossRefGoogle Scholar
  34. 34.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Z. L. Li
    • 1
  • G. Y. Li
    • 1
  • L. X. Cheng
    • 1
  • J. H. Huang
    • 1
  1. 1.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations