Rare earth and transition metal doped BiFeO3 ceramics: structural, magnetic and dielectric characterization



Here we studied the effect of rare earth (Y) and transition metal (Co, Ni) substitution on the structure, magnetic and dielectric properties of the BiFeO3 (BFO) multiferroic ceramic. The samples were synthesized by modified rapid liquid phase sintering method. The phase purity and structural characteristics of the ceramics were investigated by X-ray diffraction and scanning electron microscope. The results revealed the uniform micro-structure with reduced grain size due to the rare earth doping in the BFO. Compared to the pure BFO, enhanced coercivity and resistivity were observed for the co-doped ceramics with Y and Co. The improvement of temperature stability of magnetism and electrical conductivity was found for ceramic co-doped with Y+3 and Ni+2 ions. The possible origin of the improvement in these properties has been discussed on the basis of the size effect and nature of the dopants.


BiFeO3 Impurity Phase Remnant Magnetization Multiferroic Property Depolarization Field 



The author would like to acknowledge the support received from the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG) project Grant DCR-14/2013 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) postdoctoral fellowship Grant 300810/2015-6. One of us (A.F.Jr.) is a CNPq fellow under Grant No. 308183/2012-6. The authors would also like to acknowledge the help received from Juracy Leandro in the Electronic Lab and Hermínia Pessoni in Synthesis Lab.


  1. 1.
    J.S. Hwang, J.Y. Cho, S.Y. Park, Y.J. Yoo, P.S. Yoo, B.W. Lee, Y.P. Lee, Appl. Phys. Lett. 106, 062902 (2015)CrossRefGoogle Scholar
  2. 2.
    K. Thangavelu, T.D. Rao, A. Sriniva, S. Asthana, J Mater Sci: Mater Electron 26, 8676 (2015)Google Scholar
  3. 3.
    J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E.J.C. Deranlot, M. Bibe, A. Barthelemy, Nano Lett. 12, 1141 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Chaturvedi, R. Das, RSC Adv. 5, 23563 (2015)CrossRefGoogle Scholar
  6. 6.
    V.S. Puli, A. Kumar, J. Alloys Compd. 509, 8223 (2011)CrossRefGoogle Scholar
  7. 7.
    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, A. Burger, J. Appl. Phys. 97, 093903 (2005)CrossRefGoogle Scholar
  8. 8.
    Y. Yao, W. Liu, Int. J. Appl. Ceram. Technol. 8, 1246 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Mukherjee, M. Banerjeea, S. Basua, N.T.K. Thanhb, L. Greenb, M. Palc, Phys. B 448, 199 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Qi, J. Dho, Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  11. 11.
    I. Coondooa, N. Panwara, Thin Solid Films 520, 6493 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Goto, Y. Yamasaki, H. Watanabe, T. Kimura, Y. Tokura, Phys. Rev. B 72, 220403 (2005)CrossRefGoogle Scholar
  13. 13.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)CrossRefGoogle Scholar
  14. 14.
    S.M. Selbach, T. Tybell, T. Grande, Chem. Mater. 19, 6478 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Yan, J. Chen, J. Cheng, Z. Meng, J. Eur. Ceram. Soc. 30, 265 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Chen, J. Cheng, S. Yu, Z. Meng, J. Cryst. Growth 291, 135 (2006)CrossRefGoogle Scholar
  17. 17.
    Z.T. Hu, B. Chenb, T.T. Lima, RSC Adv. 4, 27820 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Dai, Q. Xu, X. Zheng, S. Yuan, Y. Zhai, M. Xu, Phys. B 407, 560 (2012)CrossRefGoogle Scholar
  19. 19.
    K. Chakrabarti, K. Das, B. Sarkar, S. Ghosh, S.K. De, G. Sinha, J. Lahtinen, Appl. Phys. Lett. 101, 042401 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Li, G.H. Rao, J.K. Liang, Y.H. Liu, J. Luo, J.R. Chen, Appl. Phys. Lett. 90, 162513 (2007)CrossRefGoogle Scholar
  21. 21.
    Q. Xu, Z. Wenb, J. Gaoc, D. Wub, S. Tangc, M. Xua, Phys. B 406, 2025 (2011)CrossRefGoogle Scholar
  22. 22.
    K.G. Yang, Y.L. Zhang, S.H. Yang, B. Wang, J. Appl. Phys. 107, 124109 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Kumar, M. Kar, Phys. B 448, 90 (2014)CrossRefGoogle Scholar
  24. 24.
    P. Tang, D. Kuang, S. Yang, Y. Zhang, J. Mater. Sci. Mater. Electron. 27, 2594 (2016)CrossRefGoogle Scholar
  25. 25.
    D. Kuang, P. Tang, X. Ding, S. Yang, Y. Zhang, J. Mater. Sci. Mater. Electron. 26, 3001 (2015)CrossRefGoogle Scholar
  26. 26.
    S.T. Zhang, Y. Zhang, M.-H. Lu, C.-L. Du, Y.-F. Chen, Z.-G. Liu, Y.-Y. Zhu, N.-B. Ming, X.Q. Pan, Appl. Phys. Lett. 88, 162901 (2006)CrossRefGoogle Scholar
  27. 27.
    Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Appl. Phys. Lett. 91, 082906 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Pradhan, J. Das, P. Rout, S. Das, D. Mishra, D. Sahu, A.P. nad, V.V. Srinivasu, B. Nayak, S. Verma, B. Roul, J. Magn. Magn. Mater. 322, 3614 (2010)CrossRefGoogle Scholar
  29. 29.
    S.S. Naira, M. Mathewsa, P. Joyb, M. Anantharamana, J. Magn. Magn. Mater. 283, 344 (2004)CrossRefGoogle Scholar
  30. 30.
    C. Kittel, Introduction to solid state physics (Wiley, Hoboken, 1995)Google Scholar
  31. 31.
    S.R. Shinde, S.B. Ogale, J.S. Higgins, Phys. Rev. Lett. 92, 166601 (2004)CrossRefGoogle Scholar
  32. 32.
    P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)CrossRefGoogle Scholar
  33. 33.
    R. Das, K. Mandal, J. Magn. Magn. Mater. 324, 1913 (2012)CrossRefGoogle Scholar
  34. 34.
    A. von Hippel, R.G. Breckenridge, F.G. Chesley, L. Tisza, Ind. Eng. Chem. 38, 1097 (1946)CrossRefGoogle Scholar
  35. 35.
    J. Petzelt, T. Ostapchuk, I. Gregora, R. Waser, Phys. Rev. B 64, 184111 (2001)CrossRefGoogle Scholar
  36. 36.
    M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, Phys. Rev. B 73, 064114 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations