Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method

  • Raghvendra Singh Yadav
  • Jaromir Havlica
  • Jiri Masilko
  • Jacub Tkacz
  • Ivo Kuřitka
  • Jarmila Vilcakova


Zinc ferrite nanoparticles have been synthesized by sol–gel auto-combustion method using starch as a fuel. The impact of annealing temperature on crystal structure, microstructure and dielectric properties is investigated. The powder X-ray diffraction results demonstrated the formation of well crystalline single cubic phase of zinc ferrite at annealing temperature 400 °C. Increase in crystallinity, crystallite size and lattice parameter were observed with increase of annealing temperature 600 and 800 °C. Field Emission Scanning Electron Microscopy study revealed that the zinc ferrite nanoparticles annealed at 400 °C were spherical with a particle size range 5–30 nm. These particles annealed at 600 °C were also spherical in morphology with a particle size range 10–50 nm. However, zinc ferrite nanoparticles annealed at 800 °C were polyhedron in morphology with particle size range 15–70 nm. The variations of real and imaginary part of dielectric constant, tan δ and AC conductivity are studied at room temperature. The dielectric spectral analysis demonstrated that the dielectric constant is higher at low frequency and decreases with increase in frequency. This dielectric behavior follows the Maxwell–Wagner interfacial polarization. The dielectric constant and dielectric loss tangent of zinc ferrite nanoparticles exhibit dependence on annealing temperature. The impact of annealing temperature is also analyzed through Modulus spectroscopy and Impedance analysis to understand the interaction between grain and grain boundary in zinc ferrite nanoparticles.


Ferrite ZnFe2O4 Particle Size Range Ferrite Nanoparticles Dielectric Loss Tangent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors, Dr. Raghvendra Singh Yadav, Dr. Ivo Kuřitka and Dr. Jarmila Vilcakova, acknowledge the support obtained through the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504). One author, Dr. Raghvendra Singh Yadav, also acknowledge the support by Sustainability and Development Reg. LO1211 Program of National Program of Sustainability I (The Ministry of Education, Youth and Sports) at The Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Czech Republic.


  1. 1.
    W. Zhu, L. Wang, R. Zhao, J. Ren, G. Lu, Y. Wang, Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 3, 2862 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Yang, X. Liu, Y. Yang, W. Xiao, Z. Li, D. Xue, F. Li, J. Ding, Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications. J. Mater. Chem. C 1, 2875 (2013)CrossRefGoogle Scholar
  3. 3.
    K.K. Bharathi, M. Noor-A-Alam, R.S. Vemuri, C.V. Ramana, Correlation between microstructure, electrical and optical properties of nanocrystalline NiFe1.925Dy0.075O4 thin films. RSC Adv. 2, 941–948 (2012)CrossRefGoogle Scholar
  4. 4.
    G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-da-Silva, P.C. Morais, M.A.G. Soler, Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films. Phys. Chem. Chem. Phys. 15, 19853 (2013)CrossRefGoogle Scholar
  5. 5.
    M.A. Gabal, Y.M. Al, Angari, F.A. Al-Agel, “Cr-substituted Ni-Zn ferrites via oxalate decomposition. Structural, electrical and magnetic properties”. J. Magn. Magn. Mater. 391, 108–115 (2015)CrossRefGoogle Scholar
  6. 6.
    O.M. Hemeda, N.Y. Mostafa, O.H. Abd Elkader, D.M. Hemeda, A. Tawfik, M. Mostafa, Electrical and morphological properties of magnetocaloric nano ZnNi ferrite. J. Magn. Magn. Mater. 394, 96–104 (2015)CrossRefGoogle Scholar
  7. 7.
    S.G. Mendo, A.F. Alves, L.P. Ferreira, M.M. Cruz, M.H. Mendonca, M. Godinho, M.D. Carvalho, Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton. N. J. Chem. 39, 7182–7193 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Tadjarodi, M. Imani, M. Salehi, ZnFe2O4 nanoparticles and clay encapsulated ZnFe2O4 nanocomposite; synthesis strategy, structural characteristics and adsorption of dye pollutants in water. RSC Adv. 5, 56145–56156 (2015)CrossRefGoogle Scholar
  9. 9.
    D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338 (2015)CrossRefGoogle Scholar
  10. 10.
    R. Sai, S.D. Kulkarni, K.J. Vinoy, N. Bhat, S.A. Shivashankar, ZnFe2O4: rapid and sub-100 °C synthesis and anneal-tuned magnetic properties. J. Mater. Chem. 22, 2149 (2012)CrossRefGoogle Scholar
  11. 11.
    Z.K. Heiba, M.B. Mohamed, M.A. Ahmed, M.A.A. Moussa, H.H. Hamdeh, Cation distribution and dielectric properties of nanocrystalline gallium substituted nickel ferrite. J. Alloy. Compd. 586, 773–781 (2014)CrossRefGoogle Scholar
  12. 12.
    E.R. Kumar, R. Jayaprakash, The role of fuel concentration on particle size and dielectric properties of manganese substituted zinc ferrite nanoparticles. J. Magn. Magn. Mater. 366, 33–39 (2014)CrossRefGoogle Scholar
  13. 13.
    K.O. Abdulwahab, M.A. Malik, P. O’Brien, G.A. Timco, F. Tuna, R.E.P. Winpenny, R.A.D. Pattrick, V.S. Coker, E. Arenholz, Hot injection thermolysis of heterometallic pivalate clusters for the synthesis of monodisperse zinc and nickel ferrite nanoparticles. J. Mater. Chem. C 2, 6781 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloy. Compd. 650, 116–122 (2015)CrossRefGoogle Scholar
  15. 15.
    N. Lwin, R. Othman, S. Sreekantan, M.N. Ahmad Fauzi, Study on the structural and electromagnetic properties of Tm-substituted Mg–Mn ferrites by a solution combustion method. J. Magn. Magn. Mater. 385, 433–440 (2015)CrossRefGoogle Scholar
  16. 16.
    U.R. Ghodke, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites. J. Magn. Magn. Mater. 407, 60–68 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Ahmad, I.H. Gul, M. Zarrar, H. Anwar, M.B.K. Niazi, A. Khan, Improved electrical properties of cadmium substituted cobalt ferrites nanoparticles for microwave applications. J. Magn. Magn. Mater. 405, 28–35 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Aravind, M. Raghasudha, D. Ravinder, R. Vijaya Kumar, Magnetic and dielectric properties of Co doped nanocrystalline Li ferrites by auto-combustion method. J. Magn. Magn. Mater. 406, 110–117 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Srivastava, A.K. Srivastava, P. Singh, V. Baranwal, R. Kripal, J.-H. Lee, A.C. Pandey, Synthesis of zinc oxide (ZnO) nanorods and its phenol sensing by dielectric investigation. J. Alloy. Compd. 644, 597–601 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Choudhury, M. Sinha, H. Dutta, M.K. Mandal, S.K. Pradhan, A.K. Meikap, Activation behavior and dielectric relaxation of nanocrystalline zinc ferrite. Mater. Res. Bull. 60, 446–452 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Mekap, P.R. Das, R.N.P. Choudhary, Dielectric, magnetic and electrical properties of ZnFe2O4 ceramics. J. Mater. Sci. Mater. Electron. 24, 4757–4763 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J. Alloy. Compd. 509, 3917–3923 (2011)CrossRefGoogle Scholar
  23. 23.
    A. Shanmugavani, R.K. Selvan, S. Layek, C. Sanjeeviraja, Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synthesized by the combustion method: comparison between aspartic acid and glycine as fuels. J. Magn. Magn. Mater. 354, 363–371 (2014)CrossRefGoogle Scholar
  24. 24.
    P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang, X.S. Zhao, Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties. Langmuir 29, 8997–9003 (2013)CrossRefGoogle Scholar
  25. 25.
    A.N. Birgani, M. Niyaifar, A. Hasanpour, Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)CrossRefGoogle Scholar
  26. 26.
    O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-Saie, M. Shafi, A. Khatab, M. Al-hilali, M. Henini, Phys. B 406, 1989–1994 (2011)CrossRefGoogle Scholar
  27. 27.
    R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajduchová, V. Enev, I. Kuřitka, Z. Kozaková, Effect of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol-gel auto-combustion method. J. Magn. Magn. Mater. 394, 439–447 (2015)CrossRefGoogle Scholar
  28. 28.
    D.R. Lide (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2005)Google Scholar
  29. 29.
    Md. T Rahman, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)CrossRefGoogle Scholar
  30. 30.
    M.A. Amer, M. El Hiti, Mössbauer and X-ray studies for Ni0.2ZnxMg0.8-xFe2O4 ferrites. J. Magn. Magn. Mater. 234, 118–125 (2001)CrossRefGoogle Scholar
  31. 31.
    J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, Dielectric behavior of Zn substituted Cu nano-ferrites. J. Magn. Magn. Mater. 394, 105–110 (2015)CrossRefGoogle Scholar
  32. 32.
    J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, London, 1873), section 328Google Scholar
  33. 33.
    R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Dielectric properties of mixed Li–Ni–Cd ferrites. Smart Mater. Struct. 15, N36–N39 (2006)CrossRefGoogle Scholar
  34. 34.
    B. Tareev, Physics of Dielectric Materials (Mir Publishers, Moscow, 1975)Google Scholar
  35. 35.
    M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, R.K. Kotnala, Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J. Alloy. Compd. 493, 553–560 (2010)CrossRefGoogle Scholar
  36. 36.
    S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, A comparative study of structural, electrical and magnetic properties rare-earth (Dy and Nd)-modified BiFeO3. J. Mater. Sci. Mater. Electron. 25, 3854–3861 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Irfan, N.A. Niaz, I. Ali, S. Nasir, A. Shakoor, A. Aziz, N. Karamat, N.R. Khalid, Dielectric behavior and magnetic properties of Mn-substituted Ni–Zn ferrites. J. Electron. Mater. 44, 2369–2377 (2015)CrossRefGoogle Scholar
  38. 38.
    G. Sathishkumar, C. Venkataraju, K. Sivakumar, Magnetic and dielectric properties of cadmium substituted nickel cobalt nanoferrites. J. Mater. Sci. Mater. Electron. 24, 1057–1062 (2013)CrossRefGoogle Scholar
  39. 39.
    Md.D. Rahaman, K.K. Nahar, M.N.I. Khan, A.K.M. Akther, Hossain, synthesis, structural, and electromagnetic properties of Mn0.5Zn0.5−xMgxFe2O4 (x = 0.0, 0.1) polycrystalline ferrites. Phys. B 481, 156–164 (2016)CrossRefGoogle Scholar
  40. 40.
    L. Chauhan, A.K. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel autocombustion. Ceram. Int. 41, 8341–8351 (2015)CrossRefGoogle Scholar
  41. 41.
    C. Behera, R.N.P. Choudhary, P.R. Das, Size effect on electrical and magnetic properties of mechanically alloyed CoFe2O4 nanoferrite. J. Mater. Sci. Mater. Electron 26, 2343–2356 (2015)CrossRefGoogle Scholar
  42. 42.
    D. Varshney, K. Verma, Substitutional effect on structural and dielectric properties of Ni1−xAxFe2O4 (A = Mg, Zn) mixed spinel ferrites. Mater. Chem. Phys. 140, 412–418 (2013)CrossRefGoogle Scholar
  43. 43.
    S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. J. Magn. Magn. Mater. 363, 114–120 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Raghvendra Singh Yadav
    • 1
    • 2
  • Jaromir Havlica
    • 2
  • Jiri Masilko
    • 2
  • Jacub Tkacz
    • 2
  • Ivo Kuřitka
    • 1
  • Jarmila Vilcakova
    • 1
  1. 1.Centre of Polymer Systems, University InstituteTomas Bata University in ZlínZlínCzech Republic
  2. 2.Materials Research CentreBrno University of TechnologyBrnoCzech Republic

Personalised recommendations