Effects of Fe2O3 doping on microstructural and electrical properties of ZnO-based linear resistance ceramics

  • Jianfeng Zhu
  • Qian Liu
  • Jingjing Wang
  • Fen Wang
  • Haibo Yang
  • Lei Wang


ZnO-based linear resistance ceramics were synthesized from ZnO–MgO–Al2O3–La2O3–SiO2–Fe2O3 at 1320 °C for 3 h by the conventional ceramics method in air. The microstructure and the crystal characteristics were investigated by scanning electron microscope equipped with energy dispersive spectrometer and X-ray diffraction respectively. The influence of Fe2O3 content on the linear current–voltage (IV) characteristic and dielectric characteristics have been systematically investigated in detail. The results indicated that the main phase of samples doped by Fe2O3 was hexagonal wurtzite structure of ZnO with the second phase of ZnAl2O4. The optimum result of linear IV characteristic was obtained with nonlinear coefficient of 1.08, when the content of Fe2O3 was 0.50 mol%. With the increasing of dopant Fe2O3 contents, the dielectric constant and resistivity of ZnO-based linear resistance ceramics were influenced significantly, moreover, the resistance–temperature characteristics presented the negative temperature coefficient effects.


Fe2O3 Nonlinear Coefficient Fe2O3 Content ZnAl2O4 Varistor Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Key Project of Chinese Ministry of Education (No. 210218), Scientific and technological project of Wenzhou (H20100079, H20100087), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.


  1. 1.
    I. Kham, S. Khan, R. Nongjai et al., Structural and optical properties of gel-combustion systhesized Zr doped ZnO nanoparticles. Opt. Mater. 6(35), 1189–1193 (2013)CrossRefGoogle Scholar
  2. 2.
    H.M. Xiong, Y. Xu, Q.G. Ren et al., Stable aqueous ZnO @ polymer core–shell nanoparticles with tunable photoluminescence and their application in cell imaging. J. Am. Chem. Soc. 130(24), 7522–7523 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Pan, C. Song, X.J. Liu et al., Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO film. Mater. Sci. Eng. R 62, 1–35 (2008)CrossRefGoogle Scholar
  4. 4.
    K. Hembram, D. Sivaprahasam, T.N. Rao, Combusion synthesis of doped nanocrystalline ZnO powders for varistors applications. J. Eur. Ceram. Soc. 10(31), 1905–1913 (2011)CrossRefGoogle Scholar
  5. 5.
    D. Sridev, K.V. Rajendran, Synthesis and optical characteristics of ZnO nanocrystals. Bull. Mater. Sci. 2(32), 165–168 (2009)CrossRefGoogle Scholar
  6. 6.
    J.F. Zhu, J.J. Wang, Y. Zhou et al., Major effects on microstructure and electrical properties of ZnO-based linear resistance ceramics with MgO changes. J. Mater. Sci. Mater. Electron. 5(25), 2273–2278 (2014)CrossRefGoogle Scholar
  7. 7.
    J.F. Zhu, J.J. Wang, Y. Zhou et al., Effects of NiO doping on microstructure and electrical properties of ZnO-based linear resistance ceramics. J. Mater. Sci. Mater. Electron. 2(25), 791–796 (2014)CrossRefGoogle Scholar
  8. 8.
    J.F. Zhu, Y. Zhou, H.B. Yang et al., Effects of TiO2 addition on microstructure and electrical properties of ZnO-based linear resistance ceramics. J. Mater. Sci. Mater. Electron. 2(23), 445–450 (2012)CrossRefGoogle Scholar
  9. 9.
    J.F. Zhu, Y. Zhou, H.B. Yang et al., Influence of Al2O3 doping on the microstructure and current–voltage characteristics of ZnO-based linear resistance ceramics. Key Eng. Mater. 480–481, 556–559 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Matbuaka, Nonohmic properties of zinc oxide ceramics. Appl. Phys. 10(6), 736–746 (1971)Google Scholar
  11. 11.
    E.R. Leite, M.A.L. Nobre, E. Longo et al., Microstructural development of ZnO varistor during reactive liquid phase sintering. J. Mater. Sci. 20(31), 5391–5398 (1996)CrossRefGoogle Scholar
  12. 12.
    Z.Y. Lu, Y.Y. Cai, Z.W. Chen et al., Effects of Fe impurity on performance of ZnO varistors. Rare Metal. Mater. Eng. 36, 187–190 (2007)Google Scholar
  13. 13.
    J.K. Tsai, T.B. Wu, Microstructure and nonohmic properties of binary ZnO–V2O5 ceramics sintered at 900 °C. Mater. Lett. 3(26), 199–203 (1996)CrossRefGoogle Scholar
  14. 14.
    M. Mehedi Hassan, Wasi Khan, Ameer Azam et al., Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions. J. Lumin. 145, 160–166 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Sida, S. Chun, N. Wakiya et al., Effect on the sintering temperature and atmosphere on the grain growth and grain boundary phase formation of Pr-doped ZnO Varistor. J. Ceram. Soc. Jpn. 104(1205), 44–48 (1996)CrossRefGoogle Scholar
  16. 16.
    X.L. Su, Y. Jia, X.Q. Liu et al., Preparation, dielectric property and infared emissivity of Fe-doped ZnO powder by coprecipitution method at various reaction time. Ceram. Int. 4(40), 5307–5311 (2014)CrossRefGoogle Scholar
  17. 17.
    Z.J. Peng, X.L. Fu, Y.X. Zang et al., Influence of Fe2O3 doping on microstructural and electrical properties of ZnO–Pr6O11 based varistor ceramic materials. J. Alloys Compd. 508, 494–499 (2010)CrossRefGoogle Scholar
  18. 18.
    J.J. Wang, J.F. Zhu, Y. Zhou et al., Microstructure and electrical properties of Sm2O3 doped ZnO-based linear resistance ceramics. J. Mater. Sci. Mater. Electron. 25(8), 3301–3307 (2014)CrossRefGoogle Scholar
  19. 19.
    J.J. Liu, C.G. Duan, W.N. Mei et al., Dielectric properties and Maxwell–Wagner relaxation of compounds ACu3Ti4O12(A = Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys 98(9), 093703-5 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Sedky, M. Abu-Abdeen, A. Abdalaziz et al., Nonlinear I–V characteristics in doped ZnO based-ceramic varistor. Phys. B 1–2(38), 266–273 (2007)CrossRefGoogle Scholar
  21. 21.
    F. Wang, G. Zhang, H.B. Yang et al., Low temperature sintering and magnetoelectric properties of laminated BaTiO3/BiY2Fe5O12 composites. J. Alloys Compd. 632, 460–466 (2015)CrossRefGoogle Scholar
  22. 22.
    D.C. Sinclar, T.B. Adams, F.D. Morrison, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153–2155 (2002)CrossRefGoogle Scholar
  23. 23.
    T.K. Gupta, Application of Zinc oxide varistors. J. Am. Ceram. Soc. 73(7), 1840–1871 (1990)CrossRefGoogle Scholar
  24. 24.
    W. Heywang, Resistivity anomaly in doped barium titanate. J. Am. Ceram. Soc. 10(47), 488–490 (1996)Google Scholar
  25. 25.
    S. Bernik, S. Macek, B. Ai, Microstructure and electrical characteristics of Y2O3-dpoped ZnO–Bi2O3-based varistor ceramics. J. Eur. Ceram. Soc. 10(21), 1875–1878 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jianfeng Zhu
    • 1
  • Qian Liu
    • 1
  • Jingjing Wang
    • 1
  • Fen Wang
    • 1
  • Haibo Yang
    • 1
  • Lei Wang
    • 1
  1. 1.School of Materials Science and EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China

Personalised recommendations