Sintering characteristics and microwave dielectric properties of low loss ZnZrNb2O8 ceramics achieved by reaction sintering process

  • Haitao Wu
  • J. X. Bi
  • H. J. Wang
  • X. S. Jiang
  • Y. X. Mao


Monoclinic-structure ZnZrNb2O8 were firstly prepared by reaction sintering process based on conventional solid state method. Sintering characteristics and microwave dielectric properties of ZnZrNb2O8 ceramics were investigated depending on sintering temperatures ranging from 1100 to 1300 °C. Both xrd patterns and scanning electronic microscopes were used for the characterization of phase evaluation and microstructure. The dielectric properties were strongly dependent on the compositions, the densifications and the microstructures of the specimens. Compared with the conventional solid state process, the specimens with nearly full density could be obtained at a lower sintering temperature of 1200 °C with excellent microwave properties with an ɛ r of 28.37, an high Q·f of 63,300 GHz, and a τ f of −19.9 ppm/ °C.


Sinter Temperature Apparent Density Microwave Dielectric Property Dielectric Resonator Full Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the project development plan of science and technology of Jinan City (No. 201303061), Jinan City Youth Science and Technology Star Project (No. 2013035), the National Training Plan Innovation Project of college students (No. 201510427001) and National Natural Science Foundation (No. 51472108) and Study Abroad Programs by Shandong Province Government.


  1. 1.
    A.T. Vanderah, Science 298, 1182 (2002)CrossRefGoogle Scholar
  2. 2.
    I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)Google Scholar
  3. 3.
    H. Ohsato, Ceram. Int. 38, S141 (2012)CrossRefGoogle Scholar
  4. 4.
    H.T. Wu, L.P. Zhao, J. Univ. Jinan (Sci. Tech.) 30, 177 (2016)Google Scholar
  5. 5.
    M. Guo, G. Dou, Y.X. Li, S.P. Gong, J. Mater. Sci. Mater. Electron. 26, 608 (2015)CrossRefGoogle Scholar
  6. 6.
    G.G. Yao, C.J. Pei, J.G. Xu, P. Liu, J.P. Zhou, H.W. Zhang, J. Mater. Sci. Mater. Electron. 26, 7719 (2015)CrossRefGoogle Scholar
  7. 7.
    R. Muhammad, Y. Iqbal, J. Mater. Sci. Mater. Electron. 26, 9092 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Manan, D.N. Khan, A. Ullah, J. Mater. Sci. Mater. Electron. 26, 2066 (2015)CrossRefGoogle Scholar
  9. 9.
    S.D. Ramarao, V.R.K. Murthy, Scr. Mater. 69, 274 (2013)CrossRefGoogle Scholar
  10. 10.
    X. Tang, H. Yang, Q. Zhang, J. Zhou, Ceram. Int. 40, 12875 (2014)CrossRefGoogle Scholar
  11. 11.
    L.X. Li, H. Sun, H.C. Cai, X.S. Lv, J. Alloys Compd. 639, 516 (2015)CrossRefGoogle Scholar
  12. 12.
    H.B. Bafrooei, E.T. Nassaj, T. Ebadzadeh, C.F. Hu, A. Sayyadi-Shahraki, T. Kolodiazhnyi, Ceram. Int. 42, 3296 (2016)CrossRefGoogle Scholar
  13. 13.
    W.C. Tsai, Y.H. Liou, Y.C. Liou, Mater. Sci. Eng. B 177, 1133 (2012)CrossRefGoogle Scholar
  14. 14.
    H.B. Bafrooei, E.T. Nassaj, T. Ebadzadeh, C.F. Hu, J. Mater. Sci. Mater. Electron. 25, 1620 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.C. Liou, Z.S. Tsai, K.Z. Fung, C.Y. Liu, Ceram. Int. 36, 1887 (2010)CrossRefGoogle Scholar
  16. 16.
    E.S. Kim, C.J. Jeon, P.G. Clem, J. Am. Ceram. Soc. 95, 2934 (2012)CrossRefGoogle Scholar
  17. 17.
    B.W. Hakki, P.D. Coleman, IEEE Trans. 8, 402 (1960)Google Scholar
  18. 18.
    W.E. Courtney, IEEE Trans. 18, 476 (1970)Google Scholar
  19. 19.
    R.D. Shannon, G.R. Rossman, Am. Miner. 77, 94 (1992)Google Scholar
  20. 20.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Haitao Wu
    • 1
  • J. X. Bi
    • 1
  • H. J. Wang
    • 1
  • X. S. Jiang
    • 1
  • Y. X. Mao
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations