Presence of intrinsic defects and transition from diamagnetic to ferromagnetic state in Co2+ ions doped ZnO nanoparticles

  • Shankar D. Birajdar
  • Pankaj P. Khirade
  • Ashok V. Humbe
  • K. M. Jadhav


In this paper, we report the structural, morphological and magnetic properties of pure and Co2+ doped ZnO nanoparticles synthesized using sol–gel auto combustion method. The prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. The analysis of XRD pattern shows the single phase nature with a hexagonal wurtzite structure for the prepared nanoparticles. The average crystallite sizes of the prepared nanoparticles were found in the range 18–19 nm. SEM images showed that pure and Co2+ doped nanoparticles have different morphology. The shape of the prepared nanoparticles is approximately hexagonal shown by TEM image. SAED pattern also confirms the wurtzite structure with single crystalline nature. FTIR spectra showed the characteristic vibrations frequency band of Zn–O. Photo luminescence spectrum showed that two emission peaks, which are ascribed to near band edge transitions and broadened intensive green emission associated with oxygen-vacancy defects. The magnetic properties were measured by vibrating sample magnetometer (VSM) and superconducting quantum interference device with field dependant magnetization at 300 K and temperature dependant magnetization from 0 to 300 K. From VSM analysis, pure ZnO nanoparticles show diamagnetic behavior while Co2+ doped ZnO nanoparticles revealed ferromagnetic behaviour at room temperature. The significant changes in M–H loop from diamagnetic behavior to ferromagnetic behavior are due to the intrinsic defects such as oxygen vacancies (Vo) and zinc vacancies (Vzn). The RTFM has been presented in terms of vacancies in the frame of bound magnetic polaron model.


Oxygen Vacancy Field Cool Zero Field Cool Room Temperature Ferromagnetism Prepared Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors is thankful to Tata Institute of Fundamental Research (TIFR), Mumbai for providing XRD, SEM, TEM, SAED, VSM and SQUID characterizations facilities.


  1. 1.
    S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, IEEE Trans. Electron. Devices 54(5), 1040–1048 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Ohno, Science 281, 951–956 (1998)CrossRefGoogle Scholar
  3. 3.
    A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, Solid State Commun. 121, 371–373 (2002)CrossRefGoogle Scholar
  4. 4.
    D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Khim, Y.D. Park, R.G. Wilson, Appl. Phys. Lett. 83, 5488–5490 (2003)CrossRefGoogle Scholar
  5. 5.
    S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J. Kelly, A.F. Hebard, J. Electron. Mater. 35(5), 862–868 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2.10, 673–677 (2003)CrossRefGoogle Scholar
  7. 7.
    A. Janotti, C.G. Van De Wale, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126529 (2009)CrossRefGoogle Scholar
  8. 8.
    S.W. Kim, S. Fujita, S. Fujita, Appl. Phys. Lett. 81, 5036 (2002)CrossRefGoogle Scholar
  9. 9.
    X.W. Sun, H.S. Kwok, J. Appl. Phys. 86(408), 6 (1999)Google Scholar
  10. 10.
    U. Ozgur, I.Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  11. 11.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001)CrossRefGoogle Scholar
  12. 12.
    Z. Kam, X. Wang, J. Zhang, W. Jishan, Appl. Mater. Interfaces 7, 1608–1615 (2015)CrossRefGoogle Scholar
  13. 13.
    S.K. Mandal, A.K. Das, T.K. Nat, J. Appl. Phys. 100, 104315 (2006)CrossRefGoogle Scholar
  14. 14.
    Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Phys. Rev. B 77, 205411 (2008)CrossRefGoogle Scholar
  15. 15.
    B. Babu, V.P. Manjari, T. Aswani, G.T. Rao, R.J. Stella, R.V. Ravikumar, Indian J. Phys. 88(7), 683–690 (2014)CrossRefGoogle Scholar
  16. 16.
    S.-J. Han, T.-H. Jang, Y.B. Kim, B.-G. Park, J.-H. Park, Y.H. Jeong, Appl. Phys. Lett. 83, 920 (2003)CrossRefGoogle Scholar
  17. 17.
    J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004)CrossRefGoogle Scholar
  18. 18.
    J.C.A. Huang, H.S. Hsu, Y.M. Hu, C.H. Lee, Y.H. Huang, M.Z. Lin, Appl. Phys. Lett. 85, 3815 (2004)CrossRefGoogle Scholar
  19. 19.
    S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene, T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004)CrossRefGoogle Scholar
  20. 20.
    L.J. Zhuge, X.M. Wu, Z.F. Wu, X.M. Chen, Y.D. Meng, Scr. Mater. 60, 214–217 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 1 (2004)CrossRefGoogle Scholar
  22. 22.
    H. Pan, J.B. Yi, L. Shen, Phys. Rev. Lett. 99, 127201 (2007)CrossRefGoogle Scholar
  23. 23.
    C.-F. Yu, T.-J. Lin, S.-J. Sun, H. Chou, J. Phys. D 40, 6497–6500 (2007)CrossRefGoogle Scholar
  24. 24.
    Q. Xu, H. Schmidt, S. Zhou, Appl. Phys. Lett. 92(8), 82508–82900 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Ghoshal, P.S. Anil Kumar, J. Phys.: Condens. Matter 20(19), 192201 (2008)Google Scholar
  26. 26.
    M. Kapilashrami, J. Xu, V. Strom, K.V. Rao, L. Belova, Appl. Phys. Let. 95(3), 33104 (2009)CrossRefGoogle Scholar
  27. 27.
    N. H. Hong, J. Sakai, V. Brize, J. Phys. Condens. Matter. 19 (3) (2007)Google Scholar
  28. 28.
    A. Sivagamasundari, R. Pugaze, S. Chandrasekhar, S. Rajagopan, R. Kannan, Appl. Nanosci. 3(5), 383–388 (2013)CrossRefGoogle Scholar
  29. 29.
    A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68, 205202 (2003)CrossRefGoogle Scholar
  30. 30.
    D. Anbuselvan, S. Muthukumaran, Opt. Mater. 42, 124–131 (2015)CrossRefGoogle Scholar
  31. 31.
    A.N. Mallika, A.R. Reddy, K.S. Babu, Ch. Sujatha, K.V. Reddy, Opt. Mater. 36(5), 879–884 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Yang, X. Li, J. Lang, Lili Yang, M. Wei, M. Gao, X. Liu, H. Zhai, R. Wang, Y. Liu, J. Cao, Mater. Sci. Semicond. Process. 14, 247–252 (2011)CrossRefGoogle Scholar
  33. 33.
    L.A. Jose, J.M. Linet, V. Sivasubramanian, A.K. Arora, C.J. Raj, T. Maiyalagan, S.J. Das, Mater. Sci. Semicond. Process. 15(3), 308–313 (2012)CrossRefGoogle Scholar
  34. 34.
    T. Akilan, N. Srinivasan, R. Saravanan, Mater. Sci. Semicond. Process. 30, 381–387 (2015)CrossRefGoogle Scholar
  35. 35.
    B.E. Waren, X-ray Diffraction (Addison-Wesley, Reading, 1969), p. 4124Google Scholar
  36. 36.
    R.D. Shannon, C.T. Prewitt, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25, 925 (1969)CrossRefGoogle Scholar
  37. 37.
    R.D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen.Crystallogr. 32, 751 (1976)CrossRefGoogle Scholar
  38. 38.
    R.F. Silva, M.E.D. Zaniquelli, Colloids Surf. A 551, 198 (2002)Google Scholar
  39. 39.
    S. Zandi, P.K. Ameli, H. Salamati, H. Ahmadvand, M. Hakimi, Phys. B 406, 3215 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Maensiri, P. Laokul, V. Promarak, J. Cryst. Growth 289, 102 (2006)CrossRefGoogle Scholar
  41. 41.
    N. Vigeshwaran, S. Kumar, A.A. Kathe, P.V. Varadarajan, V. Prasad, Nanotechnology 17, 5087 (2006)CrossRefGoogle Scholar
  42. 42.
    S. Suwanboon, Sci. Asia 34, 31 (2008)CrossRefGoogle Scholar
  43. 43.
    Y.W. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Chem. Phys. 123, 134701 (2005)CrossRefGoogle Scholar
  44. 44.
    P. Li, S. Wang, J. Li, Y. Wei, J. Lumin. 132, 220–225 (2012)CrossRefGoogle Scholar
  45. 45.
    X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, J. Cryst. Growth 223, 201 (2001)CrossRefGoogle Scholar
  46. 46.
    B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)CrossRefGoogle Scholar
  47. 47.
    P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Sci. China Ser. A 44, 1252–1253 (2001)Google Scholar
  48. 48.
    P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003)CrossRefGoogle Scholar
  49. 49.
    B. Pal, P.K. Giri, J. Appl. Phys. 108, 084322 (2010)CrossRefGoogle Scholar
  50. 50.
    J. EI Ghoul, M. Kraini, O.M. Lemine, L. EI Mir, J. Mater. Sci.: Mater. Electron. 26, 2614–2621 (2015)Google Scholar
  51. 51.
    M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279–2283 (2009)CrossRefGoogle Scholar
  52. 52.
    M. El-Hilo, A.A. Dakhel, J. Magn. Magn. Mater. 323, 2202–2205 (2011)CrossRefGoogle Scholar
  53. 53.
    Y.H. Jeong, S.-J. Han, J.-H. Park, Y.H. Lee, J. Magn. Magn. Mater. 272, 1976–1980 (2004)CrossRefGoogle Scholar
  54. 54.
    F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Microelectron. Eng. 89, 129–132 (2012)CrossRefGoogle Scholar
  55. 55.
    R.N. Aljawfi, F. Rahman, K.M. Batoo, J. Magn. Magn. Mater. 332, 130–136 (2013)CrossRefGoogle Scholar
  56. 56.
    L.B. Duan, G.H. Rao, J. Yu, Y.C. Wang, Solid State Commun. 145, 525–528 (2008)CrossRefGoogle Scholar
  57. 57.
    B. Babu, G.R. Sundari, K. Ravindranadh, M.R. Yadav, R. Ravikumar, J. Magn. Magn. Mater. 372, 79–85 (2014)CrossRefGoogle Scholar
  58. 58.
    V.K. Sharma, M. Najim, A.K. Srivastava, G.D. Varma, J. Magn. Magn. Mater. 324, 683–689 (2012)CrossRefGoogle Scholar
  59. 59.
    J.H. Yang, L.Y. Zhao, X. Ding, L.L. Yang, Y.J. Zhang, Y.X. Wang, H.L. Liu, Mater. Sci. Eng., B 162, 143–146 (2009)CrossRefGoogle Scholar
  60. 60.
    J.H. Lia, D.Z. Shen, J.Y. Zhang, D.X. Zhao, B.S. Li, Y.M. Lu, Y.C. Liu, X.W. Fan, J. Magn. Magn. Mater. 302, 118–121 (2006)CrossRefGoogle Scholar
  61. 61.
    D.Q. Fang, R.Q. Zhang, Y. Zhang, S.L. Zhang, J. Magn. Magn. Mater. 354, 257–261 (2014)CrossRefGoogle Scholar
  62. 62.
    T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)CrossRefGoogle Scholar
  63. 63.
    J. Blasco, F. Bartolome, L.M. Garcı, J. Garc, J. Magn. Magn. Mater. 316, 177–180 (2007)CrossRefGoogle Scholar
  64. 64.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)CrossRefGoogle Scholar
  65. 65.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)CrossRefGoogle Scholar
  66. 66.
    P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res., Sect. A 199, 286–290 (2003)CrossRefGoogle Scholar
  67. 67.
    E.G. Bylander, J. Appl. Phys. 49, 1188–1195 (1978)CrossRefGoogle Scholar
  68. 68.
    M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35–42 (1992)CrossRefGoogle Scholar
  69. 69.
    M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)CrossRefGoogle Scholar
  70. 70.
    R.N. Aljawfi, S. Mollah, J. Magn. Magn. Mater. 323, 3126–3132 (2011)CrossRefGoogle Scholar
  71. 71.
    A. Kaminski, S.D. Sarma, Phys. Rev. Lett. 17, 247202 (2002)CrossRefGoogle Scholar
  72. 72.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)CrossRefGoogle Scholar
  73. 73.
    K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 2, 291 (2006)CrossRefGoogle Scholar
  74. 74.
    X.F. Wang, J.B. Xu, N. Ke, J.G. Yu, J. Wang, Q. Li, H.C. Ong, R. Zhang, Appl. Phys. Lett. 88, 223108 (2006)CrossRefGoogle Scholar
  75. 75.
    C.F. Yu, T.J. Lin, S.J. Sun, H. Chou, J. Phys. D Appl. Phys. 40, 6497 (2007)CrossRefGoogle Scholar
  76. 76.
    R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, J. Alloys Compd. 496, 324 (2010)CrossRefGoogle Scholar
  77. 77.
    P. Long, Z. Huai-Wu, W. Qi-Ye, S. Yuan-Qiang, S.U. Hua, J.Q. Xiao, Chin. Phys. Lett. 25, 1438 (2008)CrossRefGoogle Scholar
  78. 78.
    B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci. 356, 804–811 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shankar D. Birajdar
    • 1
  • Pankaj P. Khirade
    • 1
  • Ashok V. Humbe
    • 1
  • K. M. Jadhav
    • 1
  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations