Skip to main content
Log in

Presence of intrinsic defects and transition from diamagnetic to ferromagnetic state in Co2+ ions doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we report the structural, morphological and magnetic properties of pure and Co2+ doped ZnO nanoparticles synthesized using sol–gel auto combustion method. The prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area diffraction pattern (SAED), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. The analysis of XRD pattern shows the single phase nature with a hexagonal wurtzite structure for the prepared nanoparticles. The average crystallite sizes of the prepared nanoparticles were found in the range 18–19 nm. SEM images showed that pure and Co2+ doped nanoparticles have different morphology. The shape of the prepared nanoparticles is approximately hexagonal shown by TEM image. SAED pattern also confirms the wurtzite structure with single crystalline nature. FTIR spectra showed the characteristic vibrations frequency band of Zn–O. Photo luminescence spectrum showed that two emission peaks, which are ascribed to near band edge transitions and broadened intensive green emission associated with oxygen-vacancy defects. The magnetic properties were measured by vibrating sample magnetometer (VSM) and superconducting quantum interference device with field dependant magnetization at 300 K and temperature dependant magnetization from 0 to 300 K. From VSM analysis, pure ZnO nanoparticles show diamagnetic behavior while Co2+ doped ZnO nanoparticles revealed ferromagnetic behaviour at room temperature. The significant changes in M–H loop from diamagnetic behavior to ferromagnetic behavior are due to the intrinsic defects such as oxygen vacancies (Vo) and zinc vacancies (Vzn). The RTFM has been presented in terms of vacancies in the frame of bound magnetic polaron model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, IEEE Trans. Electron. Devices 54(5), 1040–1048 (2007)

    Article  Google Scholar 

  2. H. Ohno, Science 281, 951–956 (1998)

    Article  Google Scholar 

  3. A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, Solid State Commun. 121, 371–373 (2002)

    Article  Google Scholar 

  4. D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Khim, Y.D. Park, R.G. Wilson, Appl. Phys. Lett. 83, 5488–5490 (2003)

    Article  Google Scholar 

  5. S.J. Pearton, D.P. Norton, Y.W. Heo, L.C. Tien, M.P. Ivill, Y. Li, B.S. Kang, F. Ren, J. Kelly, A.F. Hebard, J. Electron. Mater. 35(5), 862–868 (2006)

    Article  Google Scholar 

  6. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2.10, 673–677 (2003)

    Article  Google Scholar 

  7. A. Janotti, C.G. Van De Wale, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126529 (2009)

    Article  Google Scholar 

  8. S.W. Kim, S. Fujita, S. Fujita, Appl. Phys. Lett. 81, 5036 (2002)

    Article  Google Scholar 

  9. X.W. Sun, H.S. Kwok, J. Appl. Phys. 86(408), 6 (1999)

    Google Scholar 

  10. U. Ozgur, I.Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  11. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  12. Z. Kam, X. Wang, J. Zhang, W. Jishan, Appl. Mater. Interfaces 7, 1608–1615 (2015)

    Article  Google Scholar 

  13. S.K. Mandal, A.K. Das, T.K. Nat, J. Appl. Phys. 100, 104315 (2006)

    Article  Google Scholar 

  14. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Phys. Rev. B 77, 205411 (2008)

    Article  Google Scholar 

  15. B. Babu, V.P. Manjari, T. Aswani, G.T. Rao, R.J. Stella, R.V. Ravikumar, Indian J. Phys. 88(7), 683–690 (2014)

    Article  Google Scholar 

  16. S.-J. Han, T.-H. Jang, Y.B. Kim, B.-G. Park, J.-H. Park, Y.H. Jeong, Appl. Phys. Lett. 83, 920 (2003)

    Article  Google Scholar 

  17. J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Appl. Phys. Lett. 84, 1338 (2004)

    Article  Google Scholar 

  18. J.C.A. Huang, H.S. Hsu, Y.M. Hu, C.H. Lee, Y.H. Huang, M.Z. Lin, Appl. Phys. Lett. 85, 3815 (2004)

    Article  Google Scholar 

  19. S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene, T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004)

    Article  Google Scholar 

  20. L.J. Zhuge, X.M. Wu, Z.F. Wu, X.M. Chen, Y.D. Meng, Scr. Mater. 60, 214–217 (2009)

    Article  Google Scholar 

  21. M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 1 (2004)

    Article  Google Scholar 

  22. H. Pan, J.B. Yi, L. Shen, Phys. Rev. Lett. 99, 127201 (2007)

    Article  Google Scholar 

  23. C.-F. Yu, T.-J. Lin, S.-J. Sun, H. Chou, J. Phys. D 40, 6497–6500 (2007)

    Article  Google Scholar 

  24. Q. Xu, H. Schmidt, S. Zhou, Appl. Phys. Lett. 92(8), 82508–82900 (2008)

    Article  Google Scholar 

  25. S. Ghoshal, P.S. Anil Kumar, J. Phys.: Condens. Matter 20(19), 192201 (2008)

    Google Scholar 

  26. M. Kapilashrami, J. Xu, V. Strom, K.V. Rao, L. Belova, Appl. Phys. Let. 95(3), 33104 (2009)

    Article  Google Scholar 

  27. N. H. Hong, J. Sakai, V. Brize, J. Phys. Condens. Matter. 19 (3) (2007)

  28. A. Sivagamasundari, R. Pugaze, S. Chandrasekhar, S. Rajagopan, R. Kannan, Appl. Nanosci. 3(5), 383–388 (2013)

    Article  Google Scholar 

  29. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68, 205202 (2003)

    Article  Google Scholar 

  30. D. Anbuselvan, S. Muthukumaran, Opt. Mater. 42, 124–131 (2015)

    Article  Google Scholar 

  31. A.N. Mallika, A.R. Reddy, K.S. Babu, Ch. Sujatha, K.V. Reddy, Opt. Mater. 36(5), 879–884 (2014)

    Article  Google Scholar 

  32. J. Yang, X. Li, J. Lang, Lili Yang, M. Wei, M. Gao, X. Liu, H. Zhai, R. Wang, Y. Liu, J. Cao, Mater. Sci. Semicond. Process. 14, 247–252 (2011)

    Article  Google Scholar 

  33. L.A. Jose, J.M. Linet, V. Sivasubramanian, A.K. Arora, C.J. Raj, T. Maiyalagan, S.J. Das, Mater. Sci. Semicond. Process. 15(3), 308–313 (2012)

    Article  Google Scholar 

  34. T. Akilan, N. Srinivasan, R. Saravanan, Mater. Sci. Semicond. Process. 30, 381–387 (2015)

    Article  Google Scholar 

  35. B.E. Waren, X-ray Diffraction (Addison-Wesley, Reading, 1969), p. 4124

    Google Scholar 

  36. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25, 925 (1969)

    Article  Google Scholar 

  37. R.D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen.Crystallogr. 32, 751 (1976)

    Article  Google Scholar 

  38. R.F. Silva, M.E.D. Zaniquelli, Colloids Surf. A 551, 198 (2002)

    Google Scholar 

  39. S. Zandi, P.K. Ameli, H. Salamati, H. Ahmadvand, M. Hakimi, Phys. B 406, 3215 (2011)

    Article  Google Scholar 

  40. S. Maensiri, P. Laokul, V. Promarak, J. Cryst. Growth 289, 102 (2006)

    Article  Google Scholar 

  41. N. Vigeshwaran, S. Kumar, A.A. Kathe, P.V. Varadarajan, V. Prasad, Nanotechnology 17, 5087 (2006)

    Article  Google Scholar 

  42. S. Suwanboon, Sci. Asia 34, 31 (2008)

    Article  Google Scholar 

  43. Y.W. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Chem. Phys. 123, 134701 (2005)

    Article  Google Scholar 

  44. P. Li, S. Wang, J. Li, Y. Wei, J. Lumin. 132, 220–225 (2012)

    Article  Google Scholar 

  45. X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, J. Cryst. Growth 223, 201 (2001)

    Article  Google Scholar 

  46. B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)

    Article  Google Scholar 

  47. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Sci. China Ser. A 44, 1252–1253 (2001)

    Google Scholar 

  48. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003)

    Article  Google Scholar 

  49. B. Pal, P.K. Giri, J. Appl. Phys. 108, 084322 (2010)

    Article  Google Scholar 

  50. J. EI Ghoul, M. Kraini, O.M. Lemine, L. EI Mir, J. Mater. Sci.: Mater. Electron. 26, 2614–2621 (2015)

    Google Scholar 

  51. M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279–2283 (2009)

    Article  Google Scholar 

  52. M. El-Hilo, A.A. Dakhel, J. Magn. Magn. Mater. 323, 2202–2205 (2011)

    Article  Google Scholar 

  53. Y.H. Jeong, S.-J. Han, J.-H. Park, Y.H. Lee, J. Magn. Magn. Mater. 272, 1976–1980 (2004)

    Article  Google Scholar 

  54. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Microelectron. Eng. 89, 129–132 (2012)

    Article  Google Scholar 

  55. R.N. Aljawfi, F. Rahman, K.M. Batoo, J. Magn. Magn. Mater. 332, 130–136 (2013)

    Article  Google Scholar 

  56. L.B. Duan, G.H. Rao, J. Yu, Y.C. Wang, Solid State Commun. 145, 525–528 (2008)

    Article  Google Scholar 

  57. B. Babu, G.R. Sundari, K. Ravindranadh, M.R. Yadav, R. Ravikumar, J. Magn. Magn. Mater. 372, 79–85 (2014)

    Article  Google Scholar 

  58. V.K. Sharma, M. Najim, A.K. Srivastava, G.D. Varma, J. Magn. Magn. Mater. 324, 683–689 (2012)

    Article  Google Scholar 

  59. J.H. Yang, L.Y. Zhao, X. Ding, L.L. Yang, Y.J. Zhang, Y.X. Wang, H.L. Liu, Mater. Sci. Eng., B 162, 143–146 (2009)

    Article  Google Scholar 

  60. J.H. Lia, D.Z. Shen, J.Y. Zhang, D.X. Zhao, B.S. Li, Y.M. Lu, Y.C. Liu, X.W. Fan, J. Magn. Magn. Mater. 302, 118–121 (2006)

    Article  Google Scholar 

  61. D.Q. Fang, R.Q. Zhang, Y. Zhang, S.L. Zhang, J. Magn. Magn. Mater. 354, 257–261 (2014)

    Article  Google Scholar 

  62. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)

    Article  Google Scholar 

  63. J. Blasco, F. Bartolome, L.M. Garcı, J. Garc, J. Magn. Magn. Mater. 316, 177–180 (2007)

    Article  Google Scholar 

  64. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  Google Scholar 

  65. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  Google Scholar 

  66. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res., Sect. A 199, 286–290 (2003)

    Article  Google Scholar 

  67. E.G. Bylander, J. Appl. Phys. 49, 1188–1195 (1978)

    Article  Google Scholar 

  68. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35–42 (1992)

    Article  Google Scholar 

  69. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  Google Scholar 

  70. R.N. Aljawfi, S. Mollah, J. Magn. Magn. Mater. 323, 3126–3132 (2011)

    Article  Google Scholar 

  71. A. Kaminski, S.D. Sarma, Phys. Rev. Lett. 17, 247202 (2002)

    Article  Google Scholar 

  72. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  73. K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 2, 291 (2006)

    Article  Google Scholar 

  74. X.F. Wang, J.B. Xu, N. Ke, J.G. Yu, J. Wang, Q. Li, H.C. Ong, R. Zhang, Appl. Phys. Lett. 88, 223108 (2006)

    Article  Google Scholar 

  75. C.F. Yu, T.J. Lin, S.J. Sun, H. Chou, J. Phys. D Appl. Phys. 40, 6497 (2007)

    Article  Google Scholar 

  76. R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, J. Alloys Compd. 496, 324 (2010)

    Article  Google Scholar 

  77. P. Long, Z. Huai-Wu, W. Qi-Ye, S. Yuan-Qiang, S.U. Hua, J.Q. Xiao, Chin. Phys. Lett. 25, 1438 (2008)

    Article  Google Scholar 

  78. B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci. 356, 804–811 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors is thankful to Tata Institute of Fundamental Research (TIFR), Mumbai for providing XRD, SEM, TEM, SAED, VSM and SQUID characterizations facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birajdar, S.D., Khirade, P.P., Humbe, A.V. et al. Presence of intrinsic defects and transition from diamagnetic to ferromagnetic state in Co2+ ions doped ZnO nanoparticles. J Mater Sci: Mater Electron 27, 5575–5583 (2016). https://doi.org/10.1007/s10854-016-4462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4462-0

Keywords

Navigation