Colloidal synthesis of Gd3+ doped ZrO2 based dielectrics and their structural and electrochemical property studies

  • P. Ilanchezhiyan
  • C. Siva
  • T. W. Kang
  • G. Mohan Kumar


Solution processed wide band gap dielectrics have nowadays started to receive renewed interest for practical application in semiconductor electronics. In this regard, undoped and gadolinium (Gd) doped zirconia (ZrO2) nanocrystallites were colloidally processed and their potential for dielectric applications has been demonstrated. X-ray diffraction measurements revealed the effective crystallization of nanostructures and the successful substitution of Gd ions into the cubic ZrO2 matrix. The particulate-like characteristics of undoped and Gd doped ZrO2 nanostructures were examined through the electron microscopes, which hardly revealed any difference among them. The optical band gap of ZrO2 nanostructures was determined to be around 4.64–4.80 eV from the absorbance measurements. The potential of Gd doped ZrO2 nanostructures for dielectric functions were evaluated through electrochemical impedance spectroscopic measurements. The improved capacitance values estimated from the Nyquist plots suggests the potential of the investigated materials for low power and low voltage electronic applications.


Zirconyl Nitrate Electrochemical Impedance Spectroscopic Significant Blue Shift Zirconia Nanostructures Gadolinium Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015-066177). Also, this work was supported under the framework of international cooperation program managed by National Research Foundation of Korea (No. 2015K2A1C2067880).


  1. 1.
    J. Mannhart, D.G. Schlom, Science 327, 1607–1611 (2010)CrossRefGoogle Scholar
  2. 2.
    R. Nechache, C. Harnagea, S. Li, L. Cargenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photon. 9, 61–67 (2015)CrossRefGoogle Scholar
  3. 3.
    Z. Liu, X. Jing, D. Chenb, G. Shen, Chem. Soc. Rev. 44, 161–192 (2015)CrossRefGoogle Scholar
  4. 4.
    J.-S. Lee, J. Mater. Chem. 21, 14097–14112 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Zhu, J. Kang, J. Kang, D. Jariwala, J.D. Wood, J.W.T. Seo, K.S. Chen, T.J. Marks, M.C. Hersam, Nano Lett. 15, 7029–7036 (2015)CrossRefGoogle Scholar
  6. 6.
    W. Xu, H. Wang, F. Xie, J. Chen, H. Cao, J.-B. Xu, ACS Appl. Mater. Interfaces 7, 5803–5810 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Zhang, M. Li, G. Zhou, S. Wang, Y. Zhou, J. Phys. Chem. Solids 67, 2430–2434 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Ninjbadgar, G. Garnweitner, A. Börger, L.M. Goldenberg, O.V. Sakhno, J. Stumpe, Adv. Funct. Mater. 19, 1819–1825 (2009)CrossRefGoogle Scholar
  9. 9.
    K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, T. Hartmann, Science 289, 748–751 (2000)CrossRefGoogle Scholar
  10. 10.
    K.J. Moreno, M.A. Guevara, A.F. Fuentes, J. Solid State Chem. 179, 928–934 (2006)CrossRefGoogle Scholar
  11. 11.
    R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stöver, J. Am. Ceram. Soc. 83, 2023–2028 (2000)CrossRefGoogle Scholar
  12. 12.
    I. Freris, P. Riello, F. Enrichi, D. Cristofori, A. Benedetti, Opt. Mater. 33, 1745–1752 (2011)CrossRefGoogle Scholar
  13. 13.
    T.S. Kalkur, Y.C. Lu, Thin Solid Films 193, 207 (1992)Google Scholar
  14. 14.
    G.D. Wilk, R.M. Wallace, Appl. Phys. Lett. 112, 76 (2000)Google Scholar
  15. 15.
    T.S. Jeon, J.M. White, D.L. Kwong, Appl. Phys. Lett. 78, 368–370 (2001)CrossRefGoogle Scholar
  16. 16.
    M. He, H. Zhang, S. Zhang, J. Wan, J. Mater. Sci. Mater. Electron. 23, 1734–1738 (2012)CrossRefGoogle Scholar
  17. 17.
    C.W. Raubach, M.Z. Krolow, M.F. Mesko, S. Cava, M.L. Moreira, E. Longo, N.L.V. Carreno, CrystEngComm 14, 393–396 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Liu, S. Lee, D. Su, B. Lee, S. Lee, R.E. Winans, C. Yin, S. Vajda, L. Pfefferle, G.L. Haller, Langmuir 28, 17159–17167 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Habazaki, S. Koyama, Y. Aoki, N. Sakaguchi, S. Nagata, ACS Appl. Mater. Interfaces 3, 2665–2670 (2011)CrossRefGoogle Scholar
  20. 20.
    E. De la Rosa, P. Salas, H. Desirena, C. Angeles, R.A. Rodríguez, Appl. Phys. Lett. 87, 241912 (2005)CrossRefGoogle Scholar
  21. 21.
    D. Solís, T. López-Luke, E. De la Rosa, P. Salas, C. Angeles-Chavez, J. Lumin. 129, 449–455 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Liao, D. Zhou, S. Liu, H.R. Wen, X. Qiu, J. Chen, Phys. B 436, 59–63 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang, Opt. Mater. 35, 274–279 (2012)CrossRefGoogle Scholar
  24. 24.
    L.A. Gómez, L.D.S. Menezes, C.B. de Araújo, R.R. Gonçalves, S.J.L. Ribeiro, Y. Messaddeq, J. Appl. Phys. 107, 113508 (2010)CrossRefGoogle Scholar
  25. 25.
    E. De la Rosa, L.A. Diaz-Torres, P. Salas, R.A. Rodrıguez, Opt. Mater. 27, 1320–1325 (2005)CrossRefGoogle Scholar
  26. 26.
    A. Baéz-Rodríguez, O. Alvarez-Fragoso, M. García-Hipólito, J. Guzmán-Mendoza, C. Falcony, Ceram. Int. 41, 7197–7206 (2015)CrossRefGoogle Scholar
  27. 27.
    V. Kiisk, A. Tamm, K. Utt, J. Kozlova, H. Mändar, L. Puust, J. Aarik, I. Sildos, Thin Solid Films 583, 70–75 (2015)CrossRefGoogle Scholar
  28. 28.
    H.Q. Cao, X. Qiu, B. Luo, Y. Liang, Y.H. Zhang, R.Q. Tan, M.J. Zhao, Q.M. Zhu, Adv. Funct. Mater. 14, 243–246 (2004)CrossRefGoogle Scholar
  29. 29.
    H. Guo, N. Dong, M. Yin, J. Phys. Chem. B 108, 19205–19209 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, J. Phys. Chem. B 106, 1909–1912 (2002)CrossRefGoogle Scholar
  31. 31.
    R.I. Merino, J.A. Pardo, J.I. Pena, G.F. De La Fuente, A. Larrea, V.M. Orera, Phys. Rev. B 56, 10907–10915 (1997)CrossRefGoogle Scholar
  32. 32.
    B. Savoini, J.E.M. Santiuste, R. Gonzalez, Phys. Rev. B 56, 5856–5865 (1997)CrossRefGoogle Scholar
  33. 33.
    Z. Wang, B. Yang, Z. Fu, W. Dong, Y. Yang, W. Liu, Appl. Phys. A 81, 691–694 (2005)CrossRefGoogle Scholar
  34. 34.
    X. Bai, A. Pucci, V.T. Freitas, R.A.S. Ferreira, N. Pinna, Adv. Funct. Mater. 22, 4275–4283 (2012)CrossRefGoogle Scholar
  35. 35.
    L. Kumari, W.Z. Li, J.M. Xu, R.M. Leblanc, D.Z. Wang, Y. Li, H. Guo, J. Zhang, Cryst. Growth Des. 9, 3874–3880 (2009)CrossRefGoogle Scholar
  36. 36.
    N.G. Petrik, D.P. Taylor, T.M. Orlando, J. Appl. Phys. 85, 6770–6776 (1999)CrossRefGoogle Scholar
  37. 37.
    P.P. Murmu, R.J. Mendelsberg, J. Kennedy, D.A. Carder, B.J. Ruck, A. Markwitz, R.J. Reeves, P. Malar, T. Osipowicz, J. Appl. Phys. 110, 033534 (2011)CrossRefGoogle Scholar
  38. 38.
    K. Schwarzburg, F. Wiling, J. Phys. Chem. B 107, 3552–3555 (2003)CrossRefGoogle Scholar
  39. 39.
    A. Bewick, K. Kunimatsu, J.W. Russell, J. Electroanal. Chem. 276, 175–186 (1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. Ilanchezhiyan
    • 1
  • C. Siva
    • 2
  • T. W. Kang
    • 1
  • G. Mohan Kumar
    • 1
  1. 1.Quantum-Functional Semiconductor Research CenterDongguk UniversitySeoulRepublic of Korea
  2. 2.Department of Physics and NanotechnologySRM UniversityKattankulathurIndia

Personalised recommendations