Effects of calcining temperature on crystal structures, dielectric properties and lattice vibrational modes of Ba(Mg1/3Ta2/3)O3 ceramics

  • Feng Shi
  • Haiqing Sun
  • Jing Wang
  • Jun Zhang


Ba(Mg1/3Ta2/3)O3 ceramics were synthesized via a conventional solid-state sintering technique, calcined at 1200 °C (Y1), 1250 °C (Y2), and 1280 °C (Y3) for 2 h, separately, and next sintered at 1490 °C for 3 h. The main phase of BMT ceramics is a hexagonal structure \(\upsilon (\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r} )\) (164) with 1:2 ordered structure. The intensities of the superlattice diffraction peaks (001) and (100) decrease with the increase in the calcining temperature, and the diffraction peaks’ intensities of the main phase also decrease, accordingly. The baseline of Y1 and Y2 are smooth, while that of Y3 is wavily, even some new modes appear, which is due to lower ordering degree. All in all, 1200 °C (Y2) and 1250 °C (Y3) are the better calcining temperatures because they possess better dielectric properties. Ten far-infrared modes are observed for Y2 sample, which are divided into three sections, including I section: the modes below 160 cm−1 being related to the vibration between Ba2+ and the (MgTa)O6 octahedron; II section: the modes between 180 and 300 cm−1 being mostly concerned with the (MgTa)-O and (WTa)-O stretching modes; III section: the modes above 500 cm−1 being related to the O-(MgTa)-O bending modes.


Dielectric Property Calcine Temperature Phonon Mode Inorganic Crystal Structure Database Dielectric Loss Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Diasa, V.S.T. Ciminellia, F.M. Matinagab, R.L. Moreirab, Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics. J. Eur. Ceram. Soc. 21, 2739–2744 (2001)CrossRefGoogle Scholar
  2. 2.
    W.A. Lan, M.H. Liang, C.T. Hu, K.S. Liu, I.N. Lin, Influence of Zr-Doping on the microstructure and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 materials. Mater. Chem. Phys. 79, 266–269 (2003)CrossRefGoogle Scholar
  3. 3.
    J.I. Yang, S. Nahm, C.H. Choi, H.J. Lee, H.M. Park, Microstructure and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics with ZrO2 addition. J. Am. Ceram. Soc. 85, 165–168 (2002)CrossRefGoogle Scholar
  4. 4.
    H. Tamura, D.A. Sagala, K. Wakino, Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure. Jpn. J. Appl. Phys. 25, 787–791 (1986)CrossRefGoogle Scholar
  5. 5.
    L. Chai, P.K. Davies, Formation and structural characterization of 1:1 ordered perovskites in the Ba(Zn1/3Ta2/3)O3–BaZrO3 system. J. Am. Ceram. Soc. 80, 3193–3198 (1997)CrossRefGoogle Scholar
  6. 6.
    I.G. Siny, R. Tao, R.S. Katiyar, R. Guo, A.S. Bhalla, Raman spectroscopy of Mg-Ta order- disorder in BaMg1/3Ta2/3O3. J. Phys. Chem. Solids 59, 181–195 (1998)CrossRefGoogle Scholar
  7. 7.
    M.W. Lufaso, Crystal structures, modeling, and dielectric property relationships of 2:1 Ordered Ba3MM′2O9 (M=Mg, Ni, Zn; M′=Nb, Ta) Perovskites. Chem. Mater. 16, 2148–2156 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Nomura, K. Toyama, K. Kaneta, Ba(Mg1/3Ta2/3)O3 ceramics with temperature- stable high dielectric constant and low microwave loss. Jpn. J. Appl. Phys. 21(10), L624–L626 (1982)CrossRefGoogle Scholar
  9. 9.
    C.H. Wang, X.P. Jing, L. Wang, J. Lu, XRD and Raman studies on the ordering/disordering of Ba(Mg1/3Ta2/3)O3. J. Am. Ceram. Soc. 92(7), 1547–1551 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Jiang, S. Kojima, C. Zhao, C. Feng, Chemical ordering in lanthanum- doped lead magnesium niobate relaxor ferroelectrics probed by A1g Raman mode. Appl. Phys. Lett. 79, 3938–3940 (2001)CrossRefGoogle Scholar
  11. 11.
    C.T. Lee, Y.C. Lin, C.Y. Huang, C.Y. Su, C.L. Hu, Reaney and dielectric characteristics in barium zinc niobate. J. Am. Ceram. Soc. 90, 483–489 (2007)CrossRefGoogle Scholar
  12. 12.
    H.L. Dong, F. Shi, Effect of synthesis temperature on crystal structure and phonon modes of Ba[Zn1/3(Nb0.4Ta0.6)2/3]O3 ceramics. CrystEngComm 14(23), 8268–8273 (2012)CrossRefGoogle Scholar
  13. 13.
    C.L. Diao, F. Shi, Effects of sintering temperatures on dielectric properties, vibrational modes and crystal structures in Ba[(Ni0.7Zn0.1)]1/3Nb2/3]O3 ceramics. J. Mater. Sci. 47(14), 5438–5445 (2012)CrossRefGoogle Scholar
  14. 14.
    M.H. Qiao, Y.J. Bian, G.H. Qi, Y. Leng, C.L. Diao, F. Shi, Effects of sintering temperatures on dielectric properties, vibrational modes and crystal structures in Ba[Sn0.32Zn0.68/3Nb1.36/3]O3 ceramics. J. Mater. Sci. Mater. Electron. 25(9), 4129–4138 (2014)CrossRefGoogle Scholar
  15. 15.
    D.M. Wei, H.L. Dong, H. Zhang, L. Wang, L.X. Li, F. Shi, Correlation between crystal structures and vibration modes of Ba[(Zn1-xMgx)1/3Nb2/3]O3 ceramics as a function of sintering temperatures. J. Mater. Sci. Mater. Electron. 25(6), 2748–2758 (2014)CrossRefGoogle Scholar
  16. 16.
    Q. Zheng, H.Q. Fan, Influence of fabrication parameters on the phase formation and dielectric properties of CaCu3Ti4O12 ceramics. J. Mater. Sci. Technol. 28(10), 920–926 (2012)CrossRefGoogle Scholar
  17. 17.
    S.Z. Jiang, Z.X. Yue, F. Shi, Effects of BaWO4 additive on Raman phonon modes and structure–property relationship of Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. J. Alloys Compd. 646, 49–55 (2015)CrossRefGoogle Scholar
  18. 18.
    C.B. Long, H.Q. Fan, Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9. Dalton Trans. 41(36), 11046–11054 (2012)CrossRefGoogle Scholar
  19. 19.
    X.J. Guo, H.D. Yan, S.G. Zhao, Z. Li, Y.T. Li, X.H. Liang, Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv. Powder Technol. 24(6), 1034–1038 (2013)CrossRefGoogle Scholar
  20. 20.
    A.S.A. Al-Fatesh, A.H. Fakeeha, Effects of calcination and activation temperature on dry reforming catalysts. J. Saudi Chem. Soc. 16(1), 55–61 (2012)CrossRefGoogle Scholar
  21. 21.
    K.J. Lee, Y.T. Chen, H.Z. Cheng, J.S.C. Jang, P.C. Chang, S.W. Lin, Y.D. Chen, Effect of calcining temperature of ceramic powders prepared from TEOS/Boehmite sol–gel on tribological behavior of brake lining materials. Mater. Sci. Forum 638–642, 950–955 (2010)CrossRefGoogle Scholar
  22. 22.
    J.M. Wu, X.Y. Zhang, J.L. Li, J.L. Yang, Effect of calcining temperature of Si3N4 poly-hollow microspheres on the properties of the porous Si3N4 ceramics prepared by aqueous gelcasting. Adv. Sci. Technol. 88, 1–8 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Satapathy, A. Ahlawat, A. Paliwal, R. Singh, M.K. Singh, P.K. Gupta, Effect of calcination temperature on nanoparticle morphology and its consequence on optical properties of Nd:Y2O3 transparent ceramics. CrystEngComm 16(13), 2723–2731 (2014)CrossRefGoogle Scholar
  24. 24.
    D.J. Shin, J.H. Koh, Effects of calcination temperature on the piezoelectric properties of lead-free Ag doped (Na, K)NbO3–LiTaO3 piezoelectric ceramics. J. Alloys Compd. 555, 390–394 (2013)CrossRefGoogle Scholar
  25. 25.
    P. Wang, Y.X. Li, Y.Q. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram. Soc. 31(11), 2005–2012 (2011)CrossRefGoogle Scholar
  26. 26.
    K. Matsumoto, T. Hiuga, K. Takada. Ba(Mg1/3Ta2/3)O3 ceramics with ultra-low loss at microwave frequencies. Applications of Ferroelectrics. 1986 Sixth IEEE International Symposium on. IEEE, 118–121 (1986)Google Scholar
  27. 27.
    S. Katayama, I. Yoshinaga, T. Nagai, Synthesis of perovskite Ba(Mg1/3Ta2/3)O3 powder from Ba–Mg–Ta at oxide precursor. Ceram. Process. Sci. Technol. 51, 69–73 (1994)Google Scholar
  28. 28.
    S. Kamba, H. Hughes, D. Noujni, S. Surendran, R.C. Pullar, P. Samoukhina, J. Petzelt, R. Freer, N.M. Alford, D.M. Iddles, Relationship between microwave and lattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectric ceramics. J. Phys. D Appl. Phys. 37, 1980–1986 (2004)CrossRefGoogle Scholar
  29. 29.
    C.T. Chia, Y.C. Chen, H.F. Cheng, Correlation of microwave dielectric properties and normal vibration modes of x Ba(Mgl/3Ta2/3)O3-(1−x)Ba(Mg1/3 Nb2/3)O3 ceramics: I. Raman spectroscopy. J. Appl. Phys. 94(5), 3360–3364 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Tamura, D.A. Sagala, K. Wakino, Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure. Jpn. J. Appl. Phys. 25(6R), 787–791 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Material Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations