The formation mechanism and stability of p-type N-doped Zn-rich ZnO films

  • Hong Zhang
  • Chunyang Kong
  • Wanjun Li
  • Guoping Qin
  • Haibo Ruan
  • Mi Tan


Nitrogen-doped Zn-rich ZnO films [ZnO:(Zn, N)] were deposited on quartz substrates using a radio-frequency (RF) magnetron sputtering and ion implantation technique. Hall-effect measurements confirmed that a p-type ZnO:(Zn, N) film with a hole concentration of ~1016 cm−3, which exhibits significantly higher stability than p-type ZnO:N film prepared under non-Zn-rich conditions, is obtained by optimized post-annealing condition. With the help of X-ray photoelectron spectroscopy, Auger electron spectroscopy, Raman spectroscopy (Raman), ultraviolet and visible spectrophotometer and first-principles calculations, it is found that a certain concentration of zinc interstitial (Zni) donor defects which easily bond to substitutional nitrogen (NO) to form defect complexes (denoted as Zni@NO) were observed in the p-type ZnO:(Zn, N) film. Further theoretical and experimental investigations indicate that the relatively stable p-type conductivity of ZnO:(Zn, N) film is attributed to the formation of passive complex (Zni–2NO), which can form an impurity band (IBM) above the valence band maximum, resulting in a decrease in the acceptor ionization energy and an improvement in the stability of p-type ZnO:(Zn, N) film. This p-type formation mechanism is consistent with donor–acceptor co-doping method. Nevertheless, the p-type performance of the ZnO:(Zn, N) film would still gradually decline over time. The remaining interstitial nitrogen atoms (Ni) in p-type film is easy trapped by the acceptor NO to form a dual-donor defect (N2)O, which is one of possible important factors for the eventual instability of p-type ZnO:(Zn, N) films.


Acceptor Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 51472038 and 51502030), and the Nature Science Foundation of Chongqing City (KJ1500319).


  1. 1.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41301 (2005)CrossRefGoogle Scholar
  2. 2.
    P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, A. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103, 459 (1997)CrossRefGoogle Scholar
  3. 3.
    S.K. Hazra, S. Basu, Hydrogen sensitivity of ZnO p–n homojunctions. Sens. Actuators B Chem. 117, 177 (2006)CrossRefGoogle Scholar
  4. 4.
    M.H. Sun, Q.F. Zhang, J.L. Wu, Electrical and electroluminescence properties of As-doped p-type ZnO nanorod arrays. J. Phys. D Appl. Phys. 40, 3798 (2007)CrossRefGoogle Scholar
  5. 5.
    R. RajMohan, K. Sambath, K. Rajendran, Experimental investigation on structural and optical properties of ZnO:AZO nano paticles by hydrothermal synthesis. J. Mater. Sci. Mater. Electron. 26, 6730 (2015)CrossRefGoogle Scholar
  6. 6.
    S.L. Yao, J.D. Hong, C.T. Lee, C.T. Ho, D.S. Liu, Determination of activation behavior in annealed Al–N codoped ZnO Films. J. Appl. Phys. 109, 103504 (2011)CrossRefGoogle Scholar
  7. 7.
    F. Zhuge, L.P. Zhu, Z.Z. Ye, D.W. Ma, J.G. Lu, J.Y. Huang, F.Z. Wang, Z.G. Ji, S.B. Zhang, ZnO p–n homojunctions and ohmic contacts to Al–N-co-doped p-type ZnO. Appl. Phys. Lett. 87, 092103 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Kumar, T.H. Kim, S.S. Kim, B.T. Lee, Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Appl. Phys. Lett. 89, 112103 (2006)CrossRefGoogle Scholar
  9. 9.
    G.T. Du, W.F. Liu, J.M. Bian, L.Z. Hu, H.W. Liang, X.S. Wang, A.M. Liu, T.P. Yang, Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis. Appl. Phys. Lett. 89, 052113 (2006)CrossRefGoogle Scholar
  10. 10.
    C.Y. Kong, G.P. Qin, H.B. Ruan, M. Nan, R.J. Zhu, T.L. Dai, Effect of post-annealing on microstructural and electrical properties of N+ ion-implanted into ZnO: in Films. Chin. Phys. Lett. 25, 1128 (2008)CrossRefGoogle Scholar
  11. 11.
    B.Y. Zhang, B. Yao, Y.F. Li, Z.Z. Zhang, B.H. Li, C.X. Shan, Investigation on the formation mechanism of p-type Li–N dual-doped ZnO. Appl. Phys. Lett. 97, 222101 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Shen, C.X. Shan, J.S. Liu, B.H. Li, Z.Z. Zhang, D.Z. Shen, Stable p-type ZnO films obtained by lithium–nitrogen codoping method. Phys. Status Solidi B 250, 2102 (2013)Google Scholar
  13. 13.
    J.J. Yang, Q.Q. Fang, W.N. Wang, D.D. Wang, C. Wang, Pulsed laser deposition of Li–N dual acceptor in p-ZnO:(Li, N) thin film and the p-ZnO:(Li, N)/n-ZnO homojunctions on Si(100). J. Appl. Phys. 115, 124509 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Duan, P. Wang, X.C. Yu, X. Han, Y.N. Chen, P. Zhao, D.L. Li, R. Yao, The synthesis and characterization of Ag–N dual-doped p-type ZnO: experiment and theory. Phys. Chem. Chem. Phys. 16, 4092 (2014)CrossRefGoogle Scholar
  15. 15.
    W.J. Li, C.Y. Kong, G.P. Qin, H.B. Ruan, L. Fang, p-Type conductivity and stability of Ag–N codoped ZnO thin films. J. Alloy. Compd. 609, 173 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.R. Sui, B. Yao, L. Xiao, G.Z. Xing, L.L. Yang, X.F. Li, X.Y. Li, J.H. Lang, S.Q. Lv, J. Cao, M. Gao, J.H. Yang, Effects of (P, N) dual acceptor doping on band gap and p-type conduction behavior of ZnO films. J. Appl. Phys. 113, 133101 (2013)CrossRefGoogle Scholar
  17. 17.
    T.M. Barnes, K. Olson, C.A. Wolden, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett. 86, 112112 (2005)CrossRefGoogle Scholar
  18. 18.
    X.Y. Chen, Z.Z. Zhang, B. Yao, M.M. Jiang, S.P. Wang, B.H. Li, C.X. Shan, L. Liu, D.X. Zhao, D.Z. Shen, Effect of compressive stress on stability of N-doped p-type ZnO. Appl. Phys. Lett. 99, 091908 (2011)CrossRefGoogle Scholar
  19. 19.
    J.G. Lu, Y.Z. Zhang, Z.Z. Ye, L.P. Zhu, L. Wang, B.H. Zhao, Q.L. Liang, Low-resistivity, stable p-type ZnO thin films realized using a Li–N dual-acceptor doping method. Appl. Phys. Lett. 88, 222114 (2006)CrossRefGoogle Scholar
  20. 20.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent advances in processing of ZnO. J. Vac. Sci. Technol. B 22, 932 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Janotti, C.G. Van de Walle, Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007)CrossRefGoogle Scholar
  22. 22.
    F. Friedrich, M.A. Gluba, N.H. Nickel, Identification of nitrogen and zinc related vibrational modes in ZnO. Appl. Phys. Lett. 95, 141903 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Zhang, C.Y. Kong, W.J. Li, G.P. Qin, Q. Xu, H. Zhang, H.B. Ruan, Y.T. Cui, L. Fang, The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO: N thin films. Appl. Surf. Sci. 327, 154 (2015)CrossRefGoogle Scholar
  24. 24.
    W.W. Liu, B. Yao, Z.Z. Zhang, L.F. Li, B.H. Li, C.X. Shan, J.Y. Zhang, D.Z. Shen, X.W. Fan, Doping efficiency, optical and electrical properties of nitrogen-doped ZnO films. J. Appl. Phys. 109, 093518 (2011)CrossRefGoogle Scholar
  25. 25.
    W.J. Li, C.Y. Kong, H.B. Ruan, G.P. Qin, L. Fang, X.D. Meng, H. Zhang, P. Zhang, Q. Xu, Investigation on the formation mechanism of In–N Codoped p-Type ZnCdO thin films: experiment and theory. J. Phys. Chem. C 118, 22799 (2014)CrossRefGoogle Scholar
  26. 26.
    W.J. Li, C.Y. Kong, G.P. Qin, H.B. Ruan, T.Y. Yang, X.D. Meng, Y.H. Zhao, W.W. Liang, L. Fang, The investigation on Raman, optical and electrical properties of p-type ZnO: N film. Sci. China Phys. Mech. Astron. 42, 819 (2012)CrossRefGoogle Scholar
  27. 27.
    N. Wan, C.Y. Kong, R.J. Zhu, G.P. Qin, T.L. Dai, M. Nan, H.B. Ruan, Preperation and charactristics research of p-type ZnO films. Acta Phys. Sin 56, 5974 (2007)Google Scholar
  28. 28.
    G. Kresse, J. Furthmuller, Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  29. 29.
    T.Y. Yang, C.Y. Kong, H.B. Ruan, G.P. Qin, W.J. Li, W.W. Liang, X.D. Meng, Y.H. Zhao, L. Fang, Y.T. Cui, Study on the p-type conductivities and Raman scattering properties of N+ ion-implanted O-rich ZnO thin films. Acta Phys. Sin. 62, 037703 (2013)Google Scholar
  30. 30.
    W.J. Li, C.Y. Kong, H.B. Ruan, G.P. Qin, G.J. Huang, T.Y. Yang, W.W. Liang, Y.H. Zhao, X.D. Meng, P. Yu, Y.T. Cui, L. Fang, Electrical properties and Raman scattering investigation of Ag doped ZnO thin films. Solid State Commun. 152, 147 (2012)CrossRefGoogle Scholar
  31. 31.
    M.A. Myers, M.T. Myers, M.J. General, J.H. Lee, L. Shao, H. Wang, P-type ZnO thin films achieved by N+ ion implantation through dynamic annealing process. Appl. Phys. Lett. 101, 112101 (2012)CrossRefGoogle Scholar
  32. 32.
    J.L. Lyons, A. Janotti, C.G. Van de Walle, Why nitrogen cannot lead to p-type conductivity in ZnO. Appl. Phys. Lett. 95, 252105 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Lany, A. Zunger, Generalized Koopmans density functional calculations reveal the deep acceptor state of No in ZnO. Phys. Rev. B 81, 205209 (2010)CrossRefGoogle Scholar
  34. 34.
    M.C. Tarun, M.Z. Iqbal, M.D. McCluskey, Nitrogen is a deep acceptor in ZnO. Aip Adv. 1, 022105 (2011)CrossRefGoogle Scholar
  35. 35.
    J.P. Zhang, L.D. Zhang, L.Q. Zhu, Y. Zhang, M. Liu, X.J. Wang, G. He, Characterization of ZnO: N films prepared by annealing sputtered zinc oxynitride films at different temperatures. J. Appl. Phys. 102, 114903 (2007)CrossRefGoogle Scholar
  36. 36.
    B.Q. Yang, P. Feng, A. Kumar, R.S. Katiyar, M. Achermann, Structural and optical properties of N-doped ZnO nanorod arrays. J. Phys. D Appl. Phys. 42, 195402 (2009)CrossRefGoogle Scholar
  37. 37.
    S.U. Awan, S.K. Hasanain, M.F. Bertino, G.H. Jaffari, Effects of substitutional Li on the ferromagnetic response of Li co-doped ZnO: Co nanoparticles. J. Phys. Condens. Matter 25, 156005 (2013)CrossRefGoogle Scholar
  38. 38.
    C.L. Perkins, S.H. Lee, X.N. Li, S.E. Asher, T.J. Coutts, Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J. Appl. Phys. 97, 034907 (2005)CrossRefGoogle Scholar
  39. 39.
    T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, K.S. Teng, J.S. Chen, Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing. J. Phys. Condens. Matter 19, 356214 (2007)CrossRefGoogle Scholar
  40. 40.
    H. Zang, Z.G. Wang, L.L. Pang, K.F. Wei, C.F. Yao, T.L. Shen, J.R. Sun, Y.Z. Ma, J. Gou, Y.B. Sheng, Y.B. Zhu, Raman investigation of ion-implanted ZnO films. Acta Phys. Sin. 59, 4831 (2010)Google Scholar
  41. 41.
    X.Q. Wang, S.R. Yang, J.Z. Wang, M.T. Li, X.Y. Jiang, G.T. Du, X. Liu, R.P.H. Chang, Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition. J. Cryst. Growth 226, 123 (2001)CrossRefGoogle Scholar
  42. 42.
    C.J. Youn, T.S. Jeong, M.S. Han, J.H. Kim, Optical properties of Zn-terminated ZnO bulk. J. Cryst. Growth 261, 526 (2004)CrossRefGoogle Scholar
  43. 43.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80, 1909 (2002)CrossRefGoogle Scholar
  44. 44.
    F.J. Manjón, B. Marí, J. Serrano, A.H. Romero, Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 97, 053516 (2005)CrossRefGoogle Scholar
  45. 45.
    K.Y. Wu, Q.Q. Fang, W.N. Wang, M.A. Thomas, J.B. Cui, On the origin of an additional Raman mode at 275 cm−1 in N-doped ZnO thin films. J. Appl. Phys. 111, 063530 (2012)CrossRefGoogle Scholar
  46. 46.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spermann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 83, 1974 (2003)CrossRefGoogle Scholar
  47. 47.
    J.B. Wang, J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles. Appl. Phys. Lett. 88, 252502 (2006)CrossRefGoogle Scholar
  48. 48.
    M. Tzolova, N. Tzenova, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, I. Ivanov, Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering. Thin Solid Films 379, 28 (2000)CrossRefGoogle Scholar
  49. 49.
    M.A. Gluba, N.H. Nickel, N. Karpensky, Interstitial zinc clusters in zinc oxide. Phys. Rev. B 88, 245201 (2013)CrossRefGoogle Scholar
  50. 50.
    W.J. Li, L. Fang, G.P. Qin, H.B. Ruan, H. Zhang, C.Y. Kong, L.J. Ye, P. Zhang, F. Wu, Tunable zinc interstitial related defects in ZnMgO and ZnCdO films. J. Appl. Phys. 117, 145301 (2015)CrossRefGoogle Scholar
  51. 51.
    M.A. Thomas, W.W. Sun, J.B. Cui, Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights. J. Phys. Chem. C 116, 6383 (2012)CrossRefGoogle Scholar
  52. 52.
    Y.F. Yan, J.B. Li, S.H. Wei, M.M. Al-Jassim, Possible approach to overcome the doping asymmetry in wideband gap semiconductors. Phys. Rev. Lett. 98, 135506 (2007)CrossRefGoogle Scholar
  53. 53.
    Y.Q. Gal, J.B. Li, S.S. Li, J.B. Xia, Y.F. Yan, S.H. Wei, Design of shallow acceptors in ZnO through compensated donor–acceptor complexes: a density functional calculation. Phys. Rev. B 80, 153201 (2009)CrossRefGoogle Scholar
  54. 54.
    X.M. Duan, C. Stampfl, M.M.M. Bilek, D.R. Mckenzie, S.H. Wei, Design of shallow acceptors in ZnO through early transition metals codoped with N acceptors. Phys. Rev. B 83, 085202 (2011)CrossRefGoogle Scholar
  55. 55.
    X.M. Duan, C. Stampfl, M.M.M. Bilek, D.R. Mckenzie, Codoping of aluminum and gallium with nitrogen in ZnO: a comparative first-principles investigation. Phys. Rev. B 79, 235208 (2009)CrossRefGoogle Scholar
  56. 56.
    X. Tang, X.F. Cheng, D. Wagner, H.F. Lü, Q.Y. Zhang, The origin of p-type conduction in Li–N codoped ZnO: an ab initio calculation study. J. Appl. Phys. 110, 013711 (2011)CrossRefGoogle Scholar
  57. 57.
    R.Y. Tian, Y.J. Zhao, The origin of p-type conduction in (P, N) codoped ZnO. J. Appl. Phys. 106, 043707 (2009)CrossRefGoogle Scholar
  58. 58.
    X. Tang, Y.Z. Deng, D. Wagner, L. Yu, H.F. Lü, Possible approach to fabricate p-type ZnO through the Be–N codoping method: first-principles calculations. Solid State Commun. 152, 1 (2012)CrossRefGoogle Scholar
  59. 59.
    X.Y. Duan, Y.J. Zhao, R.H. Yao, Pushing p-type conductivity in ZnO by (Zr, N) codoping: a first-principles study. Solid State Commun. 147, 194 (2008)CrossRefGoogle Scholar
  60. 60.
    J.W. Lee, N.G. Subramaniam, J.C. Lee, S.S. Kumar, T.W. Kang, Study of stable p-type conductivity in bismuth-doped ZnO films grown by pulsed-laser deposition. EPL 95, 47002 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hong Zhang
    • 1
  • Chunyang Kong
    • 1
  • Wanjun Li
    • 1
  • Guoping Qin
    • 1
  • Haibo Ruan
    • 2
  • Mi Tan
    • 1
  1. 1.The Chongqing City Key Laboratory of Optoelectronic Functional Materials, College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingChina
  2. 2.Research Center for Materials Interdisciplinary SciencesChongqing University of Arts and SciencesChongqingChina

Personalised recommendations