Advertisement

Development of high thermal conductivity via BNNTs/epoxy/organic-Si hybrid composite systems

  • K. C. Yung
  • T. Xu
  • H. S. Choy
Article

Abstract

Epoxy as a type of matrix material has been extensively applied for printed circuit boards (PCBs) and electronic packaging industry. In this work, polymer matrix composites, based on epoxy modified by organosilicon resin and filled with boron nitride nanotube (BNNT) were successfully prepared. Effects of the content of BNNT and organosilicon resin respectively on the thermal conductivity (TC) of the composites were investigated. The structure of the composites was analyzed by DSC, SEM and Raman. With the increase of the BNNT content, the TC of the composites enhanced. When the BNNT content rose to 5.0 wt%, the TC value of the composite was 0.45 W/m K, about three times higher than that of neat epoxy (0.1 W/m K). Also, the addition of organosilicon resin to the former epoxy filled with BNNT (5.0 wt% filling content) benefited the improvement of the TC value of the composites, which soared to 0.79 W/m K, almost seven times greater than that of the original epoxy. The TC value of composite was 0.21 W/m K whilst the filing content of AlN reached 10 wt%. The experimental result indicated that the Tg of the composites increases, and their damping decreased. It owed to the forceful interaction between the BNNT and epoxy matrix, restraining the mobility of the epoxy chain characterized by Raman. Raman analysis showed red-shifting in the epoxy/organosilicon/BNNT composite, which evidenced good wetting around the BNNT surface by the polymer due to the effect that the organosilicon resin improved the interface interaction between the BNNT powder and the epoxy resin matrix. This resulted in an increase of the crosslinking density with the filling of BNNT powder, so heat flow network of composite system would be more easily formed. Accomplished the above great improvement, the composites are promising for use as PCB substrates.

Keywords

Epoxy PCBs Filling Content Epoxy Resin Matrix Crosslinking Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by the Hong Kong Innovation Technology Fund (ITF) under Project No. GHP/061/11SZ.

References

  1. 1.
    A. Balandin, K.L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544 (1998)CrossRefGoogle Scholar
  2. 2.
    C.K. Leong, D.D.L. Chung, Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon 41, 2459 (2003)CrossRefGoogle Scholar
  3. 3.
    W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride reinforced polyethylene composites. MRS Bull. 42, 1863 (2007)CrossRefGoogle Scholar
  4. 4.
    R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composite. Curr. Opin. Solid State Mater. Sci. 8, 31 (2004)CrossRefGoogle Scholar
  5. 5.
    K.C. Yung, B.L. Zhu, J. Wu, T.M. Yue, C.S. Xie, Effect of AlN content on the performance of brominated epoxy resin for printed circuit board substrate. J. Polym. Sci. Part B 45, 1662 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotube. Phys. Rev. B 49, 5081 (1994)CrossRefGoogle Scholar
  7. 7.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269, 966 (1995)CrossRefGoogle Scholar
  8. 8.
    G.X. Chen, Y.J. Li, H. Shimizu, Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45, 2334 (2007)CrossRefGoogle Scholar
  9. 9.
    D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes. Adv. Mater. 19, 2413 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Nano Au-decorated boron nitride nanotubes: conductance modification and field-emission enhancement. Appl. Phys. Lett. 84, 2430 (2004)CrossRefGoogle Scholar
  11. 11.
    C.W. Chang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D.Y. Li, A. Majumdar, A. Zettl, Isotope effect on the thermal conductivity of individual boron nitride nanotube. Phys. Rev. Lett. 97, 085901 (2006)CrossRefGoogle Scholar
  12. 12.
    D.A. Stewart, I. Savic, N. Mingo, First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. Nano Lett. 9, 81 (2009)CrossRefGoogle Scholar
  13. 13.
    I. Savic, D.A. Stewart, N. Mingo, Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable? Phys. Rev. B 78, 235434 (2008)CrossRefGoogle Scholar
  14. 14.
    C.W. Chang, W.Q. Han, A. Zettl, Thermal conductivity of B–C–N and BN nanotubes. J. Vac. Sci. Technol., B 23, 1883 (2005)CrossRefGoogle Scholar
  15. 15.
    N.G. Chopra, A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297 (1998)CrossRefGoogle Scholar
  16. 16.
    A.P. Suryavanshi, M.F. Yu, J.G. Wen, C.C. Tang, Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004)CrossRefGoogle Scholar
  17. 17.
    D. Golberg, P.M.F.J. Costa, O. Lourie, M. Mitome, X.D. Bai, K. Kurashima, C.Y. Zhi, C.C. Tang, Y. Bando, Deformation-driven electrical transport of individual boron nitride. Nano Lett. 7, 2146 (2007)CrossRefGoogle Scholar
  18. 18.
    C.Y. Zhi, Y. Bando, T. Terao, C.C. Tang, H. Kuwahara, D. Golberg, Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Fund. Mater. 19, 1857 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Cumings, W. Mickelson, A. Zettl, Simplified synthesis of double-wall carbon nanotubes. Solid State Commun. 126, 359 (2003)CrossRefGoogle Scholar
  20. 20.
    T. Yamamoto, S. Watanabe, K. Watanabe, Universal features of quantized thermal conductance of carbon nanotubes. Phys. Rev. Lett. 92, 075502 (2004)CrossRefGoogle Scholar
  21. 21.
    Y. Xiao, X.H. Yan, J.X. Cao, J.W. Ding, Y.L. Mao, J. Xiang, Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B 69, 205415 (2004)CrossRefGoogle Scholar
  22. 22.
    C. Tang, Y. Bando, T. Sato, K. Kurashima, A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 12, 1290–1291 (2002)CrossRefGoogle Scholar
  23. 23.
    M. Ishigami, S. Aloni, A. Zettl, Properties of boron bitride nanotubes, in Scanning Tunneling Microscopy/Spectroscopy and Related Techniques: 12th International Conference, 2004Google Scholar
  24. 24.
    C. Zhi, Y. Bando, T. Terao, C. Tang, D. Golberg, Dielectric and thermal properties of epozy/boron nitride nanotube composites. Pure Appl. Chem. 82, 2175 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Deng, Q.S. Zheng, L.F. Wang, C.W. Nan, Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 90, 021914 (2007)CrossRefGoogle Scholar
  26. 26.
    C.W. Nan, G. Liu, Y.H. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, 3549 (2004)CrossRefGoogle Scholar
  27. 27.
    C.W. Nan, Z. Shi, Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett. 375, 666 (2003)CrossRefGoogle Scholar
  28. 28.
    Q.S. Zheng, D.X. Du, An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 49, 2765 (2001)CrossRefGoogle Scholar
  29. 29.
    T. Xu, C.S. Xie, Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog. Org. Coat. 46, 297–301 (2003)CrossRefGoogle Scholar
  30. 30.
    C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara et al., Purification of boron nitride nanotubes through polymer wrapping. J Phys Chem B 110, 1525–1528 (2006)CrossRefGoogle Scholar
  31. 31.
    S.K. Singhal, A.K. Srivastava, R.P. Pant, S.K. Halder, B.P. Singh, A.K. Gupta, Synthesis of boron nitride nanotubes employing mechanothermal process and its characterization. J. Mater. Sci. 43, 5243–5250 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong

Personalised recommendations