Cu-plated hollow glass microspheres for hydrogen production and degradation



Cu nanoparticles (CuNPs) were loaded on the surface of hollow glass microspheres (HGMs) by electroless plating technique. The surface morphology and composition of the plated HGMs were characterized by XRD, XPS and SEM. The results show that the size and distribution of the CuNPs varied with the different copper sulfate concentrations and played an important part in photocatalytic hydrogen production. When the concentration was 2 g/L, the hydrogen production reached 3845 μmol/g h with lactic acid as a sacrificial agent and exhibited great stability for at least 20 h, which is better than the freshly synthesized alone CuNPs (1500 μmol/g h). What’s more, the photocatalytic degradation rate of methyl orange reached up to 95.75 % after 2 h under light irradiation and the photocatalysts can be recycled for further use.


Photocatalytic Activity Methyl Orange Hydrogen Production Copper Nanoparticles Copper Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21371060, 21571064), the Pearl River S&T Nova Program of Guangzhou (No. 2014J2200047) and the Fundamental Research Funds for the Central Universities (No. 2015ZM162).


  1. 1.
    G. Tobias, M. Mariem, T. Harun (2015). doi: 10.1002/asia.201500723
  2. 2.
    B. Liu, Y.L. Fang, Z.Y. Li, S. Xu, J. Nanosci. Nanotechnol. 15, 889 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Yoon, J.E. Lee, Y.J. Jang, J.W. Lim, A. Rani, D.H. Kim, A.C.S. Appl, ACS Appl. Mater. Interfaces 7, 21073 (2015)CrossRefGoogle Scholar
  4. 4.
    Z. Chehadi, N. Alkees, A. Bruyant, J. Toufaily, J.S. Girardon, M. Capron, F. Dumeignil, T. Hamieh, R. Bachelot, S. Jradi, Mat. Sci. Semicond. Process. (2015). doi: 10.1016/j.mssp.2015.08.044 Google Scholar
  5. 5.
    S. Vadivel, G. Rajarajan, J. Mater. Sci.: Mater. Electron. 26, 5863 (2015)Google Scholar
  6. 6.
    J.M. Valero, O. Sergio, C. Gerardo, ACS Catal. 4, 3320 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Paramasivan, H. Katsumasa, K. Hideyuki, S. Tohru, F. Kunihiro, K. Satoshi, y 38, 11840 (2013)Google Scholar
  8. 8.
    H.Y. Liu, T.T. Wang, H.P. Zeng, Part. Part. Syst. Charact. 32, 869 (2015)CrossRefGoogle Scholar
  9. 9.
    Q.Y. Zhang, M. Wu, W. Zhao, Surf. Coat. Technol. 192, 213 (2005)CrossRefGoogle Scholar
  10. 10.
    X.B. Qi, C. Gao, Z.W. Zhang, S.F. Chen, B. Li, S. Wei, Int. J. Hydrogen Energy 37, 1518 (2012)CrossRefGoogle Scholar
  11. 11.
    P. Shrivastava, S. Dalai, P. Sudera, S. Vijayalakshmi, P. Sharm, Microelectron. Eng. 126, 103 (2014)CrossRefGoogle Scholar
  12. 12.
    X.J. Duan, R.J. Gao, Y.D. Zhang, Z. Jian, Mater. Lett. 65, 3625 (2011)CrossRefGoogle Scholar
  13. 13.
    J.P. Huo, L.T. Fang, Y.L. Lei, G.C. Zeng, H.P. Zeng, J. Mater. Chem. A. 2, 11040 (2014)CrossRefGoogle Scholar
  14. 14.
    J.P. Huo, H.P. Zeng, J. Mater. Chem. A. 3, 6258 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Shukla, S. Seal, Z. Rahaman, K. Scammon, Mater. Lett. 57, 151 (2002)CrossRefGoogle Scholar
  16. 16.
    X.G. Cao, H.Y. Zhang, Patent No. CN1974460AGoogle Scholar
  17. 17.
    S.L. Xu, X. Sun, H. Ye, T. You, X.Y. Song, S.X. Sun, Mater. Chem. Phys. 120, 1 (2010)CrossRefGoogle Scholar
  18. 18.
    P.D. Kirsch, J.G. Ekerdt, J. Appl. Phys. 90, 4256 (2001)CrossRefGoogle Scholar
  19. 19.
    T. Ghodselahi, Appl. Surf. Sci. 255, 2730 (2008)CrossRefGoogle Scholar
  20. 20.
    X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, J. Photoch, J Photochem. Photobiol. A. 141, 209 (2001)CrossRefGoogle Scholar
  21. 21.
    D.Z. Li, W.Z. Wang, D. Jiang, Y.L. Zheng, X.M. Li, RSC Adv. 5, 14374 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Zhang, D.D. Lu, Z.H. Zhang, J.J. Yang, J. Electrochem. Soc. 162, 557 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Cheng, T. Yu, K. Chao, S. Lu, Chem. Cat. Chem. 6, 293 (2014)Google Scholar
  24. 24.
    J.M. Kum, Y.J. Park, H.J. Kim, S.O. Cho, Nanotechnology 26, 125402 (2015)CrossRefGoogle Scholar
  25. 25.
    G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Nano Lett. 7, 1947 (2007)CrossRefGoogle Scholar
  26. 26.
    E.Z. Liu, X.Y. Hu, Y. Hu, H. Li, C.N. Tang, L. Sun, J. Wan, J. Mater. Sci. 50, 2298 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations