Lutentium incorporation influence on ZnO thin films coated via a sol–gel route: spin coating technique

  • G. Turgut
  • S. Duman
  • F. S. Ozcelik
  • B. Gurbulak
  • S. Doğan


Pure and lutetium (Lu) incorporated zinc oxide (ZnO) thin films were deposited by a sol–gel route. The effect of Lu contribution on the properties of ZnO was examined in detail by means of XRD, AFM, SEM, UV–Vis spectrophotometer, and I–V measurements. The nano-sized ZnO:Lu samples had hexagonal wurtzite structure with c-axis (002) preferential orientation. The pure ZnO nano-particles homogeneously scattered on the film surface and this homogeneous particle distribution was deteriorated with Lu incorporation. Ohmic contacts to the ZnO:Lu films were formed using gold (Au) metallization schemes. As-deposited Au contacts exhibited linear current–voltage characteristics. The optical band gap for pure ZnO went up from 3.281 to 3.303 eV with low Lu contribution level up to 3 at.%, then it decreased with more Lu level. The Urbach energy was also studied and it was found that Eu depended on Lu incorporation level.


Lutetium Atomic Force Microscopy Analysis Texture Coefficient Urbach Energy Urbach Tail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by Erzurum Technical University Fund, Project no: 2015/19. The author would like to thank Dr. Erdal Sönmez for his supports.


  1. 1.
    L.R. Singh, R.S. Ningthoujam, V. Sudarsan, S.D. Singh, S.K. Kulshreshtha, J. Lumin. 128, 1544–1550 (2008)CrossRefGoogle Scholar
  2. 2.
    A. Lakshmanan, V. Sivakumar, R.S. Kumar, R. Bhaskar, M.T. Jose, N. Lakshminarayan, Mater. Res. Bull. 47, 419–424 (2012)CrossRefGoogle Scholar
  3. 3.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  4. 4.
    G. Turgut, S. Duman, F.S. Ozcelik, E. Sonmez, B. Gurbulak, J. Sol-Gel Sci. Technol. 71, 589–596 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Davesnne, A. Ziani, C. Labbé, P. Marie, C. Frilay, X. Portier, Thin Solid Films 553, 33–37 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Pauportè, F. Pellè, B. Viana, P. Aschehoug, J. Phys. Chem. C 111, 15427–15432 (2007)CrossRefGoogle Scholar
  7. 7.
    G. Turgut, E.F. Keskenler, J. Mater. Sci. Mater. Elec. 25, 273–285 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Ebisawa, T. Okuno, K. Abe, Jpn. J. Appl. Phys. 47, 7236–7238 (2008)CrossRefGoogle Scholar
  9. 9.
    E.F. Keskenler, G. Turgut, El-Cezerî J. Sci. Eng. 2, 12–20 (2015)Google Scholar
  10. 10.
    C. Huang, M. Wang, Q. Liu, Y. Cao, Z. Deng, Z. Huang, Y. Liu, Q. Huang, W. Guo, Semicond. Sci. Technol. 24, 095019 (2009)CrossRefGoogle Scholar
  11. 11.
    B. Kotlyarchuk, V. Savchuk, M. Oszwaldowski, Cryst. Res. Technol. 40, 1118–1123 (2005)CrossRefGoogle Scholar
  12. 12.
    P.M.R. Kumar, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh, D.K. Avasthi, Semicond. Sci. Technol. 20, 120–126 (2005)CrossRefGoogle Scholar
  13. 13.
    G. Machado, D.N. Guerra, D. Leinen, J.R. Ramos-Barrado, R.E. Marotti, E.A. Dalchiele, Thin Solid Films 490, 124–131 (2005)CrossRefGoogle Scholar
  14. 14.
    K.J. Chen, F.Y. Hung, S.J. Chang, Z.S. Hu, Appl. Surf. Sci. 255, 6308–6312 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Girtan, M. Socol, B. Pattier, M. Sylla, A. Stanculescu, Thin Solid Films 519, 573–577 (2010)CrossRefGoogle Scholar
  16. 16.
    Q. Yu, J. Li, H. Li, Q. Wang, S. Cheng, L. Li, Chem. Phys. Lett. 539–540, 74–78 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Hikavyy, P. Clauws, K. Vanbesien, P. De Visschere, O.A. Williams, M. Daenen, K. Haenen, J.E. Butler, T. Feygelson, Diam. Relat. Mater. 16, 983–986 (2007)CrossRefGoogle Scholar
  18. 18.
    H.Y. Xu, Y.C. Liu, R. Mu, C.L. Shao, Y.M. Lu, D.Z. Shen, X.W. Fan, Appl. Phys. Lett. 86, 123107 (2005)CrossRefGoogle Scholar
  19. 19.
    S.M. Attia, J. Wang, G. Wu, J. Shen, J. Ma, J. Mater. Sci. Technol. 18, 211–217 (2002)Google Scholar
  20. 20.
    G. Turgut, E. Sonmez, S. Duman, Ceram. Int. 41, 2976–2989 (2015)CrossRefGoogle Scholar
  21. 21.
    D. Barreca, G.A. Battiston, D. Berto, A. Convertino, A. Gasparotto, R. Gerbasi, E. Tondello, S. Viticoli, Proc. Electrochem. Soc. PV2, 1153–1160 (2003)Google Scholar
  22. 22.
    G. Turgut, E. Sonmez, Metall. Mater. Trans. A 45, 3675–3685 (2014)CrossRefGoogle Scholar
  23. 23.
    F. Cai, L. Zhu, H. He, J. Li, Y. Yang, X. Chen, Z. Ye, J. Alloys Compd. 509, 316–320 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Chakraborty, T. Mondal, S.K. Bera, S.K. Sen, R. Ghosh, G.K. Paul, Mater. Chem. Phys. 112, 162–166 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 2353–2359 (2008)CrossRefGoogle Scholar
  26. 26.
    J.T. Luo, X.Y. Zhu, G. Chen, F. Zeng, F. Pan, Appl. Surf. Sci. 258, 2177–2181 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Gao, Y. Zhang, J.M. Zhang, K.W. Xu, Appl. Surf. Sci. 257, 2498–2502 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Chen, D. Chen, J. He, S. Zhang, Z. Chen, Appl. Surf. Sci. 255, 9413–9419 (2009)CrossRefGoogle Scholar
  29. 29.
    G. Turgut, E. Sönmez, M. Yılmaz, M.S. Cögenli, M. Yılmaz, Ü. Turgut, R. Dilber, J. Mater. Sci. Mater. Electron. 25, 2808–2828 (2014)CrossRefGoogle Scholar
  30. 30.
    G. Turgut, Thin Solid Films 594, 56–66 (2015)CrossRefGoogle Scholar
  31. 31.
    R.D.J. Tilley, Crystals and Crystal Structures (Wiley, London, 2006), p. 255Google Scholar
  32. 32.
    E.F. Keskenler, S. Doğan, G. Turgut, B. Gürbulak, Metall. Mater. Trans. A 43A, 5088–5095 (2012)CrossRefGoogle Scholar
  33. 33.
    G. Turgut, E.F. Keskenler, S. Aydın, S. Dogan, S. Duman, Ş. Özçelik, B. Gurbulak, B. Esen, Phys. Status Solidi A 211, 80–86 (2014)CrossRefGoogle Scholar
  34. 34.
    E.F. Keskenler, G. Turgut, S. Dogan, Superlattices Microstruct. 52, 107–115 (2012)CrossRefGoogle Scholar
  35. 35.
    P. Nunes, E. Fortunato, P. Tonello, F.B. Fernandes, P. Vilarinho, R. Martins, Vacuum 64, 281–285 (2002)CrossRefGoogle Scholar
  36. 36.
    T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films 366, 63–68 (2000)CrossRefGoogle Scholar
  37. 37.
    F. Gu, S.F. Wang, M.K. Lü, X.F. Cheng, S.W. Liu, G.J. Zhou, D. Xu, D.R. Yuan, J. Cryst. Growth 262, 182–185 (2004)CrossRefGoogle Scholar
  38. 38.
    L. Cao, L. Zhu, J. Jiang, R. Zhao, Z. Ye, B. Zhao, Sol. Energy Mater. Sol. Cells 95, 894–898 (2011)CrossRefGoogle Scholar
  39. 39.
    E. Burstein, Phys. Rev. 93, 632–633 (1954)CrossRefGoogle Scholar
  40. 40.
    S. Ilican, F. Yakuphanoglu, M. Caglar, Y. Caglar, J. Alloys Compd. 509, 5290–5294 (2011)CrossRefGoogle Scholar
  41. 41.
    G. Kim, J. Bang, Y. Kim, S.K. Rout, S.I. Woo, Appl. Phys. A 97, 821–828 (2009)CrossRefGoogle Scholar
  42. 42.
    R. Swapna, M. Ashok, G. Muralidharan, M.C.S. Kumar, J. Anal. Appl. Pyrolysis 102, 68–75 (2013)CrossRefGoogle Scholar
  43. 43.
    F. Urbach, Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  44. 44.
    E.A. Meulenkamp, J. Phys. Chem. B 103, 7831–7838 (1999)CrossRefGoogle Scholar
  45. 45.
    G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Phys. Rev. Lett. 47, 1480–1483 (1981)CrossRefGoogle Scholar
  46. 46.
    P. Chetri, A. Choudhury, Phys. E 47, 257–263 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. Turgut
    • 1
    • 2
  • S. Duman
    • 3
  • F. S. Ozcelik
    • 3
  • B. Gurbulak
    • 3
  • S. Doğan
    • 4
  1. 1.Department of Basic Sciences, Science FacultyErzurum Technical UniversityErzurumTurkey
  2. 2.Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied SciencesAtaturk UniversityErzurumTurkey
  3. 3.Department of Physics, Science FacultyAtaturk UniversityErzurumTurkey
  4. 4.Department of Electrical and Electronic Engineering, Engineering FacultyBalıkesir UniversityBalıkesirTurkey

Personalised recommendations