Sol–gel versus sputtering indium tin oxide films as transparent conducting oxide materials

  • M. Duta
  • M. Anastasescu
  • J. M. Calderon-Moreno
  • L. Predoana
  • S. Preda
  • M. Nicolescu
  • H. Stroescu
  • V. Bratan
  • I. Dascalu
  • E. Aperathitis
  • M. Modreanu
  • M. Zaharescu
  • M. Gartner


The aim of this paper is the replacing of the expensive sputtering method with the low cost sol–gel one in TCO applications. To this end two sets of indium tin oxide (ITO) thin films are compared and discussed in this paper: one obtained by r.f. sputtering and one by the sol–gel technique and dip-coating. For each of these sets of samples, a series of deposition parameters have been varied in an effort to obtain the most promising optical and electrical properties. Comparative structural, morphological and opto-electrical characterization of sol–gel and sputtered ITO-based films was performed by X-ray diffraction, Scanning electron microscopy, Atomic force microscopy, Spectroellipsometry, UV–VIS Spectroscopy and Hall Effect measurements in order to establish whether the chemical deposition method could lead to thin films with competitive properties as those obtained through the physical method. Comparable, high transmittance (85–90 %) in the VIS–NIR range (250–1050 nm) and carrier concentration values (1020–1021 cm−3) were obtained between sputtered and sol–gel ITO films. The sputtered ITO film in 75 % N2, annealed at 500 °C and the sol–gel 0.1 M ITO film with 10 layers deposited on SiO2/glass exhibit degenerate semiconductor behavior.


Indium Oxide Transparent Conductive Oxide Charge Carrier Density Chemical Deposition Method Degenerate Semiconductor Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Romanian PNII-ID-PCE-2011-3-0446 grant. Project EU (ERDF) and Romanian Government that allowed the acquisition of the research infrastructure under POS-CCE (Project INFRANANOCHEM—No. 19/01.03.2009) is also acknowledged.


  1. 1.
    V. Malathy, S. Sivaranjani, V.S. Vidhya, T. Balasubramanian, J. Joseph Prince, C. Sanjeeviraja, M. Jayachandran, J. Mater. Sci. Mater. Electron. 21, 1299 (2010)CrossRefGoogle Scholar
  2. 2.
    R.A. Afre, Y. Hayashi, T. Soga, G. Kalita, M. Umeno, Chem. Phys. Lett. 481, 68 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Minami, Thin Sol. Films 516, 5822 (2008)CrossRefGoogle Scholar
  4. 4.
    O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, J. Phys. D Appl. Phys. 43, 055402 (2010)CrossRefGoogle Scholar
  5. 5.
    T. Koida, M. Kondo, K. Tsutsumi, A. Sakaguchi, M. Suzuki, H. Fujiwara, J. Appl. Phys. 107, 033514 (2010)CrossRefGoogle Scholar
  6. 6.
    V.V. Pillay, K. Vijayalakshmi, J. Mater. Sci. Mater. Electron. 24, 1895 (2013)Google Scholar
  7. 7.
    A.S.A.C. Diniz, Renew. Energ. 36, 1153 (2011)CrossRefGoogle Scholar
  8. 8.
    D.S. Ginley, H. Hosono, D.C. Paine, Handbook of Transparent Conductors (Springer, New York, 2010)Google Scholar
  9. 9.
    M. Nistor, A. Petitmangin, C. Hebert, W. Seiler, Appl. Surf. Sci. 257, 5337 (2011)CrossRefGoogle Scholar
  10. 10.
    F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, J. Mater. Sci. Mater. Electron. 12, 57 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Gartner, H. Stroescu, A. Marin, P. Osiceanu, M. Anastasescu, M. Stoica, M. Nicolescu, M. Duta, S. Preda, E. Aperathitis, A. Pantazis, V. Kampylafka, M. Modreanu, M. Zaharescu, Appl. Surf. Sci. 313, 311 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Stroescu, M. Anastasescu, S. Preda, M. Nicolescu, M. Stoica, N. Stefan, E. Aperathitis, M. Modreanu, M. Zaharescu, M. Gartner, Thin Solid Films 541, 121 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Zhu, Z. Yang, J. Mater. Sci. Mater. Electron. 24, 3646 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Cho, Y.H. Yun, Ceram. Int. 37, 615 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Hasan, Zadeh Maha, M.M. Bagheri-Mohagheghi, H. Azimi-Juybari. Thin Sol. Films 536, 57 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Marikkannu, C. Sanjeeviraja, S. Piraman, A. Ayeshamariam, J. Mater. Sci. Mater. Electron. 26, 2531 (2015)CrossRefGoogle Scholar
  17. 17.
    C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press Inc., CA, USA, 1990)Google Scholar
  18. 18.
    L. Predoana, S. Preda, M. Nicolescu, M. Anastasescu, J.M. Calderon-Moreno, M. Duta, M. Gartner, M. Zaharescu, J. Sol–Gel. Sci. Technol. 71, 303 (2014)CrossRefGoogle Scholar
  19. 19.
    H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)Google Scholar
  20. 20.
    J. Lv, K. Huang, X. Chen, J. Zhu, C. Cao, X. Song, Z. Sun, Opt. Commun. 284, 2905 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Hotovy, J. Hüpkes, W. Böttler, E. Marins, L. Spiess, T. Kups, V. Smirnov, I. Hotovy, J. Kováč, Appl. Surf. Sci. 269, 81 (2013)CrossRefGoogle Scholar
  22. 22.
    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraj, Vacuum 84, 864 (2010)CrossRefGoogle Scholar
  23. 23.
    G.B. González, T.O. Mason, J.P. Quintana, O. Warschkow, D.E. Ellis, J.H. Hwang, J.P. Hodges, J.D. Jorgensen, J. Appl. Phys. 96, 3912 (2004)CrossRefGoogle Scholar
  24. 24.
    S. Honda, M. Watamori, K. Oura, Thin Sol. Films 281–282(1–2), 206 (1996)CrossRefGoogle Scholar
  25. 25.
    R. Latz, K. Michael, M. Scherer, Jpn. J. Appl. Phys. 30(2A), L149–L151 (1991)CrossRefGoogle Scholar
  26. 26.
    N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, H. Nanto, J. Vac. Sci. Technol. A 19(4), 1636 (2001)CrossRefGoogle Scholar
  27. 27.
    P.K. Song, Y. Shigesato, M. Kamei, I. Yasui, Jpn. J. Appl. Phys. 38(5A), 2921 (1999)CrossRefGoogle Scholar
  28. 28.
    E. Kubota, Y. Shigesato, M. Igarashi, T. Haranoh, K. Suzuki, Jpn. J. Appl. Phys. 33(9A), 4997 (1994)CrossRefGoogle Scholar
  29. 29.
    L.J. Meng, M.P. Dos Santos, J. Vac. Sci. Technol. A 18(4), 1668 (2000)CrossRefGoogle Scholar
  30. 30.
    M. Chen, Z.L. Pei, X. Wang, Y.H. Yu, X.H. Liu, C. Sun, L.S. Wen, J. Phys. D Appl. Phys. 33, 2538 (2000)CrossRefGoogle Scholar
  31. 31.
    C.C. Yu, W.H. Lan, K.F. Huang, J. Nanomater. 2014, 1 (2014)Google Scholar
  32. 32.
    C. Nunes de Carvalho, A. Luis, G. Lavareda, E. Fortunato, A. Amaral, Surf. Coat. Technol. 151–152, 252 (2002)CrossRefGoogle Scholar
  33. 33.
    M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, R. Rizzoli, J. Vac. Sci. Technol. A 20, 37 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Duta
    • 1
  • M. Anastasescu
    • 1
  • J. M. Calderon-Moreno
    • 1
  • L. Predoana
    • 1
  • S. Preda
    • 1
  • M. Nicolescu
    • 1
  • H. Stroescu
    • 1
  • V. Bratan
    • 1
  • I. Dascalu
    • 1
  • E. Aperathitis
    • 2
  • M. Modreanu
    • 3
  • M. Zaharescu
    • 1
  • M. Gartner
    • 1
  1. 1.Institute of Physical Chemistry “Ilie Murgulescu”Romanian AcademyBucharestRomania
  2. 2.FORTH-IESLCreteGreece
  3. 3.Tyndall National InstituteUniversity CollegeCorkIreland

Personalised recommendations