Improvement of the magnetic properties of Li–Zn ferrite by Bi3+ substitution

  • H. M. El-Sayed
  • W. R. Agami


The effect of Bi-substitution on the physical and magnetic properties of Li0.3Zn0.4BixFe2.3−xO4 ferrites (x = 0.0, 0.02, 0.05 and 0.075), prepared by the standard ceramic method, has been studied. It is found that the saturation magnetization and the initial permeability increase up to x = 0.05 and then decrease. On the other hand, the Curie temperature decreases with increasing x. In addition, the dc electrical resistivity increases with increasing Bi-content (x) which was discussed and explained.


Ferrite Electrical Resistivity Curie Temperature Bi2O3 Cation Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express their deep thanks to Prof. Dr. A.A. Sattar, physics department, faculty of science, Ain Shams University.


  1. 1.
    D. Ravinder, Mater. Lett. 40(5), 205–208 (1999)CrossRefGoogle Scholar
  2. 2.
    H.T. Kim, H.B. Im, IEEE Trans. Magn. 18(6), 1541–1543 (1982)CrossRefGoogle Scholar
  3. 3.
    M.A. Ahmed, N. Okasha, A. Ebrahem, Ceram. Int. 31(3), 361–369 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Fedder, G. Catoiu, M. Catoiu, E. Segal, P. Cristea, J. Mater. Sci. Lett. 6(10), 1201–1202 (1987)CrossRefGoogle Scholar
  5. 5.
    N. Rezlescu, E. Rezlescu, Phys. Status Solidi (a) 147(2), 553–562 (1995)CrossRefGoogle Scholar
  6. 6.
    N. Rezlescu, E. Rezlescu, J. Am. Ceram. Soc. 79(8), 2105–2108 (1996)CrossRefGoogle Scholar
  7. 7.
    K.G. Brooks, Y. Berta, V.R.M. Amarakoon, J. Am. Ceram. Soc. 75(11), 3065–3069 (1992)CrossRefGoogle Scholar
  8. 8.
    E.W. Gorter, Philips Res. Rep. 9, 295–320 (1954)Google Scholar
  9. 9.
    S.A. Poltinnikov, Sov. Phys. Solid State 8, 1144–1149 (1966)Google Scholar
  10. 10.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Boston, 1959), p. 330Google Scholar
  11. 11.
    S.A. Patil, S.M. Otari, V.C. Mahajan, M.G. Patil, M.K. Soudagar, B.L. Patil, S.R. Sawant, Solid State Commun. 78(1), 39–42 (1991)CrossRefGoogle Scholar
  12. 12.
    E. Bermejo, T. le Mercier, M. Quarton, J. Am. Ceram. Soc. 78(2), 365–368 (1995)CrossRefGoogle Scholar
  13. 13.
    K. Mohan, Y.C. Venudhar, J. Mater. Sci. Lett. 18(1), 13–16 (1999)CrossRefGoogle Scholar
  14. 14.
    A.M. Shaikh, S.A. Jadhav, S.C. Watawe, B.K. Chougule, Mater. Lett. 44(3), 192–196 (2000)CrossRefGoogle Scholar
  15. 15.
    A. Globus, H. Pascard, V.J. Cagan, J. Phys. 38(C1), 163–168 (1977)Google Scholar
  16. 16.
    A.M. Sankpal, S.V. Kakatkar, N.D. Chaudhari, R.S. Patil, S.S. Suryavanshi, J. Mater. Sci.: Mater. Electron. 9(2), 173–179 (1998)Google Scholar
  17. 17.
    N. Miyata, J. Phys. Soc. Japan 16, 206–207 (1961)CrossRefGoogle Scholar
  18. 18.
    T.O. Mason, H.K. Bowen, J. Am. Ceram. Soc. 64(4), 237–242 (1981)CrossRefGoogle Scholar
  19. 19.
    A.A. Sattar, H.M. El-Sayed, K.M. El-Shokrofy, M.M. El-Tabey, J. Appl. Sci. 5(1), 162–168 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceAin Shams UniversityAbbasia, CairoEgypt

Personalised recommendations