Ethanol sensing behaviour of CuMnO2 nanostructured thin films

  • E. Ashlyn Kirupa
  • A. Moses Ezhil Raj
  • C. Ravidhas


Copper manganese oxide nanostructures were spray pyrolytically deposited on glass substrates with Cu:Mn concentrations 0.05:0.05, 0.1:0.1, 0.15:0.15, 0.2:0.2 M at the substrate temperature of 300 °C. The peak positions of the films deposited with precursor concentration 0.15:0.15 M confirmed the monoclinic CuMnO2 single phase structure. Surface morphology of the films was analyzed and then the chemical environment about the presence of Cu, Mn and O was analyzed in a photoelectron spectrometer. The binding energies of Cu-2p doublet positioned at 932.5 and 952 eV, represented the existence of Cu1+ in the films. Additional peak located at binding energies 638.8 and 650.3 eV corresponds to the Mn-2p of the film. The direct band gaps of the film were estimated and found near to 3.7 eV. The room temperature electrical conductivity of the film was 0.5577 mho/cm, which was comparatively high in the ABO2 group of compounds. The ethanol gas sensing property of the CuMnO2 films were measured at RT, 100 and 200 °C temperatures and the sensitivity was analysed and compared.


Precursor Concentration CuAlO2 Spray Pyrolysis Technique Adsorbed Oxygen Species Chemical Spray Pyrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939–942 (1997)CrossRefGoogle Scholar
  2. 2.
    T. Kimura, J.C. Lashley, A.P. Ramirez, Phys. Rev. B 73, 220401(1)–220401(4) (2006)Google Scholar
  3. 3.
    S. Seki, Y. Onose, Y. Tokura, Phys. Rev. Lett. 101, 067204(1)–067204(4) (2008)CrossRefGoogle Scholar
  4. 4.
    B.P.J.D. Costello, R.J. Ewen, N. Guernion, N.M. Ratcliffe, Sens. Actuators B 87, 207–210 (2002)CrossRefGoogle Scholar
  5. 5.
    D.F. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, L.W. Estrada, Thin Solid Films 373, 137–140 (2000)CrossRefGoogle Scholar
  6. 6.
    P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, X. Correig, Sens. Actuators B 99, 201–206 (2004)CrossRefGoogle Scholar
  7. 7.
    X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, Sens. Actuators B 102, 248–252 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Tamaki, T. Maekawa, S. Matsushima, N. Miura, N. Yamazoe, Chem. Lett. 3, 477–480 (1990)CrossRefGoogle Scholar
  9. 9.
    B.P.J.D.L. Costello, R.J. Ewen, H.E. Gunson, N.M. Ratcliffe, P.T.N. Spencer Phillips, Meas. Sci. Technol. 11, 1685–1691 (2000)CrossRefGoogle Scholar
  10. 10.
    W. Zeng, T.M. Liu, Z.C. Wang, Mater. Trans. 51, 243–245 (2010)CrossRefGoogle Scholar
  11. 11.
    J.J. Ho, Y.K. Fang, K.H. Wu, W.T. Hsieh, C.H. Chen, M.S. Ju, J.J. Lin, S.B. Hwang, Sens. Actuators B 50, 227–233 (1998)CrossRefGoogle Scholar
  12. 12.
    H. Dong, Z. Li, X. Xu, Z. Ding, L. Wu, X. Wang, X. Fu, Appl. Catal. B 89, 551–556 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Bessekhouad, M. Trari, J.P. Doumerc, Int. J. Hydrog. Energy 28, 43–48 (2003)CrossRefGoogle Scholar
  14. 14.
    K. Guranathan, J.O. Baeg, S.M. Lee, E. Subramanian, S.J. Moon, K.J. Kong, Catal. Commun. 9, 395–402 (2003)CrossRefGoogle Scholar
  15. 15.
    A. Barnabe, E. Mugnier, L. Presmanes, P. Tailhades, Mater. Lett. 60(29), 3468–3470 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Omeiri, Y. Gabes, A. Bouguelia, M. Trari, J. Electroanal. Chem. 614, 31–40 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Trari, J. Topfer, P. Dordor, J.C. Grenier, M. Pouchard, J.P. Doumerc, J. Solid State Chem. 178, 2751–2758 (2005)CrossRefGoogle Scholar
  18. 18.
    H.-Y. Chen, Y.-C. Lin, J.-S. Lee, Appl. Surf. Sci. 338, 113–119 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Moses Ezhil Raj, S. Grace Victoria, V. Bena Jothy, C. Ravidhas, J. Wollschlager, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, Appl. Surf. Sci. 256, 2920–2926 (2010)CrossRefGoogle Scholar
  20. 20.
    X. Fu, G. Wu, S. Song, Z. Song, X. Duo, C. Lin, Appl. Surf. Sci. 148, 223–228 (1999)CrossRefGoogle Scholar
  21. 21.
    H.Y. Chen, D.J. Hsu, J. Alloys Compd. 598, 23–26 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Waskowska, L. Gerward, J.S. Olsen, S. Steenstrup, E. Talik, J. Phys. Condens. Matter 13, 2549–2562 (2001)CrossRefGoogle Scholar
  23. 23.
    B. Gillot, S. Buguet, E. Kester, C. Baubet, P. Tailhades, Thin Solid Films 357, 223–231 (1999)CrossRefGoogle Scholar
  24. 24.
    H.-Y. Chen, Y.-C. Lin, J.-S. Lee, Appl. Surf. Sci. 338, 113–119 (2015)CrossRefGoogle Scholar
  25. 25.
    H.-Y. Chen, D.-J. Hsu, Appl. Surf. Sci. 290, 161–166 (2014)CrossRefGoogle Scholar
  26. 26.
    N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv. Asia 7, 63–75 (2003)CrossRefGoogle Scholar
  27. 27.
    N. Yamazoe, Sens. Actuators B Chem. 108, 2–14 (2005)CrossRefGoogle Scholar
  28. 28.
    M. Parmar, K. Rajanna, Int. J. Smart Sens. Intell. Syst. 4, 710–725 (2011)Google Scholar
  29. 29.
    D. Zhang, S. Chava, C. Berven, S.K. Lee, R. Devitt, V. Katkanant, Appl. Phys. A 100, 145–150 (2010)CrossRefGoogle Scholar
  30. 30.
    J.Q. Xu, Y.P. Chen, D.Y. Chen, J.N. Shen, Sens. Actuators B 113, 526–531 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. Ashlyn Kirupa
    • 1
  • A. Moses Ezhil Raj
    • 2
  • C. Ravidhas
    • 3
  1. 1.Department of Physics and Research CentreNesamony Memorial Christian CollegeMarthandamIndia
  2. 2.Department of Physics and Research CentreScott Christian College (Autonomous)NagercoilIndia
  3. 3.Department of PhysicsBishop Heber College (Autonomous)TiruchirapalliIndia

Personalised recommendations