Relaxation and conduction mechanism of Dy3+ substituted SrBi2Ta2O9 ceramics

  • V. Senthil
  • T. Badapanda
  • A. Chandra Bose
  • S. Panigrahi


Dysprosium substituted SrBi2Ta2O9 Aurivillius ceramics with general formula Sr1−xDy2x/3Bi2Ta2O9 (x = 0.0, 0.025, 0.05, 0.075, 0.1) are prepared by using the solid state reaction method. X-ray diffraction pattern revealed a single phase orthorhombic (A21am) structure up to x ≤ 0.05 and deleterious phase is obtained for higher concentration. Scanning electron microscope figures show well defined anisotropic grains in all compositions. The electrical relaxation mechanism is studied by the impedance spectroscopy analysis. The Cole–Cole plots are fitted with equivalent circuit and the fitting parameters are presented. The Kohlrausch–Williams–Watts (KWW) function is used to explain the modulus analysis and confirms the coexistence of grain and grain boundary effect. The dispersion of conductivity with frequency is well explained using Jonscher's power law and DC conductivity values are obtained from the fittings. Activation energies are determined from the Arrhenius fitting of impedance and conductivity plots. The determined activation energies give an idea about the reduction of a cluster of vacancies due to the neutralization of oppositely charge vacancies which requires lower energy to mobilize the charge carrier than the individuals.


Charge Carrier Oxygen Vacancy Conduction Mechanism Constant Phase Element Mobile Charge Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The part of this research work (Electrical studies) was supported by NRB-DRDO Project (DNRD/05/4003/NRB/143), Government of India.


  1. 1.
    M.C. Scott, C.A. Paz de Araujo, Science 246, 1400 (1989)CrossRefGoogle Scholar
  2. 2.
    J.F. Scott, Physics World 8, 46 (1995)Google Scholar
  3. 3.
    O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51(7), 22 (1998)CrossRefGoogle Scholar
  4. 4.
    J.F. Scott, Ferroelectr. Rev. 1, 1 (1998)CrossRefGoogle Scholar
  5. 5.
    G.A. Smolenskii, V.A. Isupov, A.I. Aganoskaya, Sov. Phys. Solid State 3, 651 (1961)Google Scholar
  6. 6.
    B. Aurivillius, Ark. Kemi. 1, 463 (1949)Google Scholar
  7. 7.
    M.H. Tang, Z.H. Sun, Y.C. Zhou, Y. Sugiyama, H. Ishiwara, Appl. Phys. Lett. 94, 212907 (2009)CrossRefGoogle Scholar
  8. 8.
    I. Coondoo, N. Panwar, V.S. Puli, R.S. Katiyar, Integr. Ferroelectr. Int. J. 124, 1–9 (2011)CrossRefGoogle Scholar
  9. 9.
    Q. Yang, J.X. Cao, Y. Ma, Y.C. Zhou, AIP Adv. 3, 052134 (2013)CrossRefGoogle Scholar
  10. 10.
    B. Rajesh Kannan, B. HariharaVenkataraman, J. Mater. Sci. Mater. Electron. 25, 4943–4948 (2014)CrossRefGoogle Scholar
  11. 11.
    E. Barsoukov, J.R. Macdonald (eds.), Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New Jersey, 2005)Google Scholar
  12. 12.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  13. 13.
    A. Peláiz-Barranco, O. García-Zaldívar, F. Calderón-Piñar, R. López-Noda, Solid State Commun. 133, 515–519 (2005)CrossRefGoogle Scholar
  14. 14.
    J.D. Bobić, M.M. VijatovićPetrović, J. Banys, B.D. Stojanović, Ceram. Int. 39, 8049–8057 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Zou, Y. Yu, J. Li, Q. Cao, X. Wang, J. Hou, Mater. Res. Bull. 69, 112–115 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Verma, K. Sreenivas, V. Gupta, J. Appl. Phys. 105(024511), 1–5 (2009)Google Scholar
  17. 17.
    V. Senthil, T. Badapanda, A. Chandra Bose, S. Panigrahi, J. Mater. Sci. Mater. Electron. (2015). doi: 10.1007/s10854-015-3930-2 Google Scholar
  18. 18.
    Y. Noguchi, M. Miyayama, T. Kudo, Phys. Rev. B 63, 214102 (2001)CrossRefGoogle Scholar
  19. 19.
    T.K. Song, S.E. Park, J.A. Cho, M.H. Kim, J.S. Kim, H.S. Lee, S.S. Kim, J. Korean Phys. Soc. 42, S1343 (2003)Google Scholar
  20. 20.
    J.S. Zhu, H.X. Qin, Z.H. Bao, Y.N. Wang, W.Y. Cai, P.P. Chen, W. Lu, H.L.W. Chan, C.L. Choy, Appl. Phys. Lett. 79, 3827 (2001)CrossRefGoogle Scholar
  21. 21.
    H. Ke, Y. Zhou, D.C. Jia, W. Wang, X.Q. Xu, J. Sol-Gel. Sci. Technol. 34, 131 (2005)CrossRefGoogle Scholar
  22. 22.
    C.H. Lu, S.K. Saha, Mater. Lett. 42, 150 (2000)CrossRefGoogle Scholar
  23. 23.
    “Basics of Electrochemical Impedance Spectroscopy”, Application note, Gamry Instruments, 734 Louis Drive Warminster, PA 18974, USAGoogle Scholar
  24. 24.
    R.K. Panda, D. Behera, J. Alloys Compd. 615, 899–905 (2014)CrossRefGoogle Scholar
  25. 25.
    P. Dhak, D. Dhak, M. Das, K. Pramanik, P. Pramanik, Mater. Sci. Eng. B 164(3), 165–171 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Hosono, K. Harada, Y. Yamashita, Jpn. J. Appl. Phys. 40, 5722–5726 (2001)CrossRefGoogle Scholar
  27. 27.
    S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, J. Phys. D 42(6), 065413 (2009)CrossRefGoogle Scholar
  28. 28.
    V. Senthil, T. Badapanda, A. Chandra Bose, S. Panigrahi, ISRN Ceram. (2012). doi: 10.5402/2012/943734 Google Scholar
  29. 29.
    G. Singh, V.S. Tiwari, J. Appl. Phys. 106, 124104 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Maity, D. Bhattacharya, S.K. Ray, J. Phys. D. Appl. Phys. 44, 095403–095412 (2011)CrossRefGoogle Scholar
  31. 31.
    V. Senthil, T. Badapanda, S.N. Kumar, P. Kumar, S. Panigrahi, J. Polym. Res. 19, 9838 (2012)CrossRefGoogle Scholar
  32. 32.
    R. Bergman, J. Appl. Phys. 88, 1356–1365 (2000)CrossRefGoogle Scholar
  33. 33.
    K.S. Rao, P.M. Krishna, D.M. Prasad, D. Gangadharudu, J. Mater. Sci. 42, 4801–4809 (2007)CrossRefGoogle Scholar
  34. 34.
    R.K. Panda, D. Behera, J. Alloys Compd. 587, 481–486 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. 112, 08432 (2012)CrossRefGoogle Scholar
  36. 36.
    W. Cao, R. Gerhardt, Solid State Ion. 42, 213–221 (1990)CrossRefGoogle Scholar
  37. 37.
    R.K. Dwivedi, D. Kumar, O. Parkash, J. Mater. Sci. 36, 3657–3665 (2001)CrossRefGoogle Scholar
  38. 38.
    P. Singh, P. Singh, S. Singh, O. Parkash, D. Kumar, J. Mater. Sci. 43, 989–1001 (2008)CrossRefGoogle Scholar
  39. 39.
    A.K. Jonscher, Nature 267, 673–679 (1977)CrossRefGoogle Scholar
  40. 40.
    J.F. Scott, M. Dawber, Appl. Phys. Lett. 76, 3801–3803 (2000)CrossRefGoogle Scholar
  41. 41.
    W. Li, A. Chen, X. Lu, J. Zhu, J. Appl. Phys. 98, 024109 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsSVS College of EngineeringCoimbatoreIndia
  2. 2.Department of PhysicsNational Institute of TechnologyRourkelaIndia
  3. 3.Department of PhysicsCV Raman College of EngineeringBhubaneswarIndia
  4. 4.Department of PhysicsNational Institute of TechnologyTrichyIndia

Personalised recommendations