Synthesis, characterization and tuning of visible region absorption ability of cadmium doped ceria quantum dots

  • V. Ramasamy
  • G. Vijayalakshmi


The undoped and different concentrations of Cd (0.1–0.5 wt%) doped Ceria nanoparticles were synthesized by chemical precipitation method. The synthesized particles were characterized by XRD, SEM, TEM, UV–visible, PL, FTIR and TG–DTA. Crystal structure, phase identification and size of the particles are analysed by X-ray diffraction pattern. The surface morphology and size of the nanoparticles are analysed through SEM, FESEM and TEM analysis. The optical properties of the nanoparticles are observed by UV–visible and PL spectroscopy. The vibrational band assignments of nanoparticles are observed through FTIR technique. The thermal stability of the nanoparticles is investigated by TG–DTA.


Ceria CeO2 Charge Transfer Band Oxygen Storage Capacity CeO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Humbert, A. Dahi, L. Dalstein, B. Busson, M. Lismont, P. Colson, L. Dreesen, Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry. J. Colloid. Inter. Sci. 445, 69–75 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Zrazhevskiv, M. Sena, X. Gao, Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. J. Chem. Soc. Rev. 39, 4326 (2010)CrossRefGoogle Scholar
  3. 3.
    Q. Dai, C.E. Duty, M.Z. Hu, Semiconductor-nanocrystals-based white light-emitting diodes. Small 6, 1577 (2010). doi: 10.1002/smll.201000144 CrossRefGoogle Scholar
  4. 4.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. J. Nat. Meth. 5, 763–775 (2008). doi: 10.1038/nmeth.1248 CrossRefGoogle Scholar
  5. 5.
    B.S. Shirke, A.A. Patil, P.P. Hankare, K.M. Garadkar, Synthesis of cerium oxide nanoparticles by microwave technique using propylene glycol as a stabilizing agent. J. Mater. Sci. Mater. Electron. 22, 200–203 (2011). doi: 10.1007/s10854-010-0114-y CrossRefGoogle Scholar
  6. 6.
    N.Q. Minh, Ceramic Fuel Cells. J. Am. Ceram. Soc. 76, 563–588 (1993). doi: 10.1111/j.1151-2916.1993.tb03645.x CrossRefGoogle Scholar
  7. 7.
    R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, G. Ravi, Effect of rf power on the properties of magnetron sputtered CeO2 thin films. J. Mater. Sci. Mater. Electron. 26, 2800–2809 (2015). doi: 10.1007/s10854-015-2761-5 CrossRefGoogle Scholar
  8. 8.
    G. Chen, F. Zhu, X. Sun, S. Sun, R. Chen, Benign synthesis of ceria hollow nanocrystals by a template-free method. J. Cryst. Eng. Comm. 13, 2904–2908 (2011). doi: 10.1039/C0CE00758G CrossRefGoogle Scholar
  9. 9.
    R.N. Blumenthal, F.S. Brugner, J.E. Garnier, The Electrical Conductivity of CaO—Doped Nonstoichiometric Cerium Dioxide from 700 to 1500 C. J. Electrochem. Soc. 120, 1230–1237 (1973). doi: 10.1149/1.2403668 CrossRefGoogle Scholar
  10. 10.
    C. Esther Jeyanthi, R. Siddheswaran, R. Medlin, M. Karl Chinnu, R. Jayavel, K. Rajarajan, Electrochemical and structural analysis of the RE3+:CeO2 nanopowders from combustion synthesis. J. Alloys. Compd. 614, 118–125 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Truffault, M.T. Ta, T. Devers, K. Konstantinov, V. Harel, C. Simmonard, C. Andreazza, I.P. Nevirkovets, A. Pineau, O. Veron, J.P. Blondeau, Application of nanostructured Ca doped CeO2 for ultraviolet filtration. J Mater. Res. Bull. 45, 527–535 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Ji, J. Zhang, H. Pang, Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. J. Appl. Catal. B 85, 148–154 (2009)CrossRefGoogle Scholar
  13. 13.
    D. Channei, B. Inceesungvorn, N. Wetchakun, S. Phanichphant, A. Nakaruk, P. Koshy, C.C. Sorrell, Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. J. Ceram. Int. 39, 3129–3134 (2013). doi: 10.1016/j.ceramint.2012.09.093 CrossRefGoogle Scholar
  14. 14.
    N.S. Arul, D. Mangalaraj, J.I. Han, Photocatalytic degradation of acid orange 7 using Cr-doped CeO2 nanorods. J. Mater. Sci. Mater. Electron. 26, 1441–1448 (2015). doi: 10.1007/s10854-014-2559-x CrossRefGoogle Scholar
  15. 15.
    Mokhtar Panahi-Kalamuei, Sakineh Alizadeh, Mehdi Mousavi-Kamazani, Masoud Salavati-Niasari, Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J. Indus. Eng. Chem. 21, 1301–1305 (2015). doi: 10.1016/j.jiec.2014.05.046 CrossRefGoogle Scholar
  16. 16.
    M. Jalilpour, M. Fathalilou, Effect of aging time and calcinations temperature on the cerium oxide nanoparticles synthesis via reverse co-precipitation method. Int. J. Phys. Sci. 7(6), 944–948 (2012). doi: 10.5897/IJPS11.131 Google Scholar
  17. 17.
    Narayanasamy Sabari Arul, D. Mangalaraj, J.I. Han, Photocatalytic degradation of acid orange 7 using Cr-doped CeO2 nanorods. J. Mater. Sci. Mater. Electron. 26, 1441–1448 (2015). doi: 10.1007/s10854-014-2559-x CrossRefGoogle Scholar
  18. 18.
    B.D. Cullity, R. Smoluchowski, Elements of X-ray diffraction. Phys. Today 10, 50 (1957)CrossRefGoogle Scholar
  19. 19.
    M. Darroudi, M. Hakimi, M. Sarani, R.K. Oskuee, A.K. Zake, L. Gholami, Facile synthesis, characterization, and evaluation of neurotoxicity effect of cerium oxide nanoparticles. J. Ceram. Int. 39, 6917–6921 (2013). doi: 10.1016/j.ceramint.2013.02.026 CrossRefGoogle Scholar
  20. 20.
    L. Yue, X.M. Zhang, Structural characterization and photocatalytic behaviors of doped CeO2 nanoparticles. J. Alloys Compd. 475, 702–705 (2009). doi: 10.1016/j.jallcom.2008.07.096 CrossRefGoogle Scholar
  21. 21.
    S. Suwanboon, T. Ratana, T. Ratana, Effects of Al and Mn dopant on structural and optical properties of ZnO thin film prepared by sol–gel route. Walailak J. Sci. Tech. 4(1), 111–121 (2007)Google Scholar
  22. 22.
    S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M = Al Mg, Ti). J. Ceram. Int. 37, 1359–1365 (2011)CrossRefGoogle Scholar
  23. 23.
    E. M. Nasir, Surface morphology and structural properties of ZnS and ZnS:Al thin films. Int. J. Inno. Res. Sci. Eng. Tech. 3 (2014) ISSN:2319–8753Google Scholar
  24. 24.
    G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. J. Phil. Mag. 1, 34–45 (1956)CrossRefGoogle Scholar
  25. 25.
    S.T. Sunekawa, K. Ishikawa, Z.Q. Li, Y. Kawazoe, A. Kasuya, Origin of anomalous lattice expansion in oxide nanoparticles. J. Phys. Rev. Lett. 85, 3440–3443 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Banerjee, L. Chongad, A. Sharma, Structural and optical properties of pure and copper doped NiS nanoparticles. Res. J. Recent Sci. 2, 326–329 (2013)Google Scholar
  27. 27.
    K. Rosolankova, J.S. Wark, E.M. Bringa, J. Hawreliak, Measuring stacking fault densities in shock-compressed FCC crystals using in situ X-ray diffraction. J. Phys. Condens. Matter 18, 6749 (2006)CrossRefGoogle Scholar
  28. 28.
    M.M. Vora, A.M. Vora, Stacking faults in the single crystals. J. Elect. Dev. 12, 734–738 (2012)Google Scholar
  29. 29.
    V. Ramasamy, G. Vijayalakshmi, Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles. J. Super Latt. Microstruc. 85, 510–521 (2015)CrossRefGoogle Scholar
  30. 30.
    V. Morris, P.G. Fleming, J.D. Holmes, M.A. Morris, Comparison of the preparation of cerium oxide nanocrystallites by forward (base to acid) and reverse (acid to base) precipitation. J. Chem. Eng. Sci. 91, 102–110 (2013)CrossRefGoogle Scholar
  31. 31.
    H.H. Ko, G. Yang, H.Z. Cheng, M.C. Wang, X. Zhao, Growth and optical properties of cerium dioxide nanocrystallites prepared by coprecipitation routes. J. Ceram. Int. 40, 4055–4064 (2014)CrossRefGoogle Scholar
  32. 32.
    E. Moghaddam, A.A. Youzbashi, A. Kazemzadeh, M.J. Eshraghi, Preparation of surface-modified ZnO quantum dots through an ultrasound assisted sol–gel process. J. Appl. Surf. Sci. 346, 111–114 (2015)CrossRefGoogle Scholar
  33. 33.
    H.M. Yadava, S.V. Otaria, R.A. Boharaa, S.S. Malic, S.H. Pawara, S.D. Delekara, Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. A Chem. 294, 130–136 (2014)CrossRefGoogle Scholar
  34. 34.
    J.R. Viswanath, H.S. Bhojyanaik, G.S. Yashavanath kumar, P.N. Prashanthkumar, G. Arunkumar, R. Praveen, EDTA-assisted hydrothermal synthesis, characterization and photoluminescent properties of Mn2+-doped ZnS. J. Lumi. 153, 446–452 (2014)CrossRefGoogle Scholar
  35. 35.
    N. Krishna Chandar, R. Jayavel, Wet chemical synthesis and characterization of pure and cerium doped Dy2O3 nanoparticles. J. Phys. Chem. Solids 73, 1164–1169 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)CrossRefGoogle Scholar
  37. 37.
    A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Photoluminescence properties of praseodymium doped cerium oxide nanocrystals. J. Ceram. Int. 40, 4445–4453 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.C. Tedenac, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J. Alloys. Compd. 462, 335–339 (2008)CrossRefGoogle Scholar
  39. 39.
    L. Yue, X.M. Zhang, Structural characterization and photocatalytic behaviors of doped CeO2 nanoparticles. J. Alloys Compd. 475, 702–705 (2009). doi: 10.1016/j.jallcom.2008.07 CrossRefGoogle Scholar
  40. 40.
    L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (2009)CrossRefGoogle Scholar
  41. 41.
    N.S. Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, C. Viswanathan, Strong quantum confinement effect in nanocrystalline cerium oxide. J Mater. Lett. 65, 2635–2638 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Cahay, Quantum confinement VI: Nanostructured materials and devices, in Proceedings of the International Symposium (The Electrochemical Society, 2001)Google Scholar
  43. 43.
    H. Haug, S.W. Koch, L.V. Keldysh, Quantum theory of the optical and electronic properties of semiconductors. Phys. Today 47, 106 (1994)CrossRefGoogle Scholar
  44. 44.
    A. Mercy, R.S. Selvaraj, B.M. Boaz, A.J. Anandhi, R. Kanagadurai, Synthesis, structural and optical characterization of cadmium sulphide nanoparticles. Int. J. Pure Appl. Phys. 51, 448–452 (2013)Google Scholar
  45. 45.
    F. Meng, L. Wanga, J. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route. J. Alloys. Compd. 556, 102–108 (2013)CrossRefGoogle Scholar
  46. 46.
    B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. J. Appl. Phys. Lett. 79, 943–945 (2001)CrossRefGoogle Scholar
  47. 47.
    L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, A. Deepthy, B. Krishnan, Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J. Appl. Phys. 102, 063524–063529 (2007)CrossRefGoogle Scholar
  48. 48.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)CrossRefGoogle Scholar
  49. 49.
    T. K. Kundu, N. Karak, P. Barik, S. Saha, Optical properties of Zno nanoparticles prepared by chemical method using poly (vinyl alcohol) (PVA) as capping agent, Int. J. Soft Comput. Eng 1 (2011) ISSN: 2231–2307Google Scholar
  50. 50.
    S. Gnanam, V. Rajendran, Synthesis of CeO2 or α–Mn2O3 nanoparticles via sol–gel process and their optical properties. J. Sol-Gel. Sci. Technol. 58, 62 (2011)CrossRefGoogle Scholar
  51. 51.
    Y.F. Huang, Y.B. Cai, D.K. Qiao, H. Liu, Morphology-controllable synthesis and characterization of CeO2 nanocrystals. Particuology 9, 170–173 (2011)CrossRefGoogle Scholar
  52. 52.
    K. Ueda, H. Tabata, T. Kawaib, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 3047–3050 (2001). doi: 10.1063/1.1384478 CrossRefGoogle Scholar
  53. 53.
    G. Wang, Q. Mu, T. Chen, Y. Wang, Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. J. Alloys Compd. 493, 202–207 (2010)CrossRefGoogle Scholar
  54. 54.
    J. Malleshappa, H. Nagabhushana, S.C. Prashantha, S.C. Sharma, N. Dhananjaya, C. Shivakumara, B.M. Nagabhushana, Eco-friendly green synthesis, structural and photoluminescent studies of CeO2:Eu3+ nanophosphors using E. tirucalli plant latex. J. Alloys. Compd. 612, 425–434 (2014)CrossRefGoogle Scholar
  55. 55.
    N. Saraswathi, N. Neelakanda Pillai, C. K. Mahadevan, Optical and magnetic studies on ZnO nanocrystals both pure and doped prepared by microwave assisted solvothermal method. Int. J. Eng. Res. Appl. 3, 2468–2473 (2013), ISSN: 2248–9622Google Scholar
  56. 56.
    K. Gupta, R.P. Singh, A. Pandey, A. Pandey, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. J. Nanotechnol. 4, 345–351 (2013). doi: 10.3762/bjnano.4.40 Google Scholar
  57. 57.
    S.Y. Lu, M.L. Wu, H.L. Chen, Polymer nanocomposite containing CdS–ZnS core-shell particles: optical properties and morphology. J. Appl. Phys. 93, 5789–5793 (2003)CrossRefGoogle Scholar
  58. 58.
    M.K. Patra, M. Manoth, V.K. Singh, G.S. Gowd, V.S. Choudhry, S.R. Vadera, N. Kumar, Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow. J. Lumin. 129, 320–324 (2009)CrossRefGoogle Scholar
  59. 59.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 (2005)CrossRefGoogle Scholar
  60. 60.
    H. Kargara, F. Ghasemi, M. Darroudi, Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceram. Int. 41, 1589–1594 (2015)CrossRefGoogle Scholar
  61. 61.
    E. Kumar, P. Selvarajan, D. Muthuraj, Synthesis and characterization of CeO2 nanocrystals by solvothermal route. J. Mater. Res. 16(2), 269–276 (2013). doi: 10.1590/S1516-14392013005000021 CrossRefGoogle Scholar
  62. 62.
    R. Suresh, V. Ponnuswamy, R. Mariappan, The role of oxidizing agents in the structural and morphological properties of CeO2 nanoparticles. Mater. Sci. Semicond. Process. 21, 45–51 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsAnnamalai UniversityChidambaramIndia

Personalised recommendations