Influence of ammonia sources on the gas sensing properties of the direct grown ZnO nanomaterials

  • Xianqing Tian
  • Kun Yu
  • Xinfeng Wang
  • Li Yang
  • Jie Sun


ZnO nanomaterials have been directly grown on Al2O3 ceramic tube by two step seeds-assisted solution method with different ammonia sources. The crystalline phase and morphology of the ZnO nanomaterials are characterized by XRD and SEM. The results of SEM reveal that the ZnO nanomaterials present different morphologies and hierarchical structures where rhombus-shaped nanoprisms, nanorods assembled nanoflowers and nanoleaves constructed nanourchins are obtained in NH4F, hexamethylenetetramine (HMT) and urea, respectively. All of the ZnO nanomaterials show the optimal working temperature at 320 °C and excellent repeatability. Gas sensing experiments demonstrate that the ZnO nanomateirals perform high responses and fast response-recovery to volatile organic compounds, especially for the nanorods assembled nanoflowers prepared in the HMT. It is believed that the enhancement of the gas sensing performances is mainly attributed to the hierarchical structures, exposed deficiencies and excellent ohm contact of the direct grown ZnO nanomaterials.


VOCs NH4F Ceramic Tube Hierarchical Nanostructures Ammonia Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financially supported by the Foundation of CAEP (426030302).


  1. 1.
    A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, M. Zacharias, Multifunctional ZnO-nanowire-based sensor. Adv. Funct. Mater. 21, 4342–4348 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens. Actuators B Chem. 157, 565–574 (2011)CrossRefGoogle Scholar
  3. 3.
    E. Şennik, S. Kerli, Ü. Alver, Z.Z. Öztürk, Effect of fluorine doping on the NO2-sensing properties of ZnO thin films. Sens. Actuators B Chem. 216, 49–56 (2015)CrossRefGoogle Scholar
  4. 4.
    R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 152, 189–191 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C 115, 12763–12773 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B Chem. 115, 247–251 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014)CrossRefGoogle Scholar
  8. 8.
    N.D. Khoang, H.S. Hong, D.D. Trung, N.V. Duy, N.D. Hoa, D.D. Thinh, N.V. Hieu, On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sens. Actuators B Chem. 181, 529–536 (2013)CrossRefGoogle Scholar
  9. 9.
    V.A. Minh, L.A. Tuan, T.Q. Huy, V.N. Hung, N.V. Quy, Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 265, 458–464 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Sundara Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sens. Actuators B Chem. 212, 10–17 (2015)CrossRefGoogle Scholar
  11. 11.
    K. Diao, M. Zhou, J. Zhang, Y. Tang, S. Wang, X. Cui, High response to H2S gas with facile synthesized hierarchical ZnO microstructures. Sens. Actuators B Chem. 219, 30–37 (2015)CrossRefGoogle Scholar
  12. 12.
    Z.S. Hosseini, A. Mortezaali, A. Iraji zad, S. Fardindoost, Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J. Alloys Comp. 628, 222–229 (2015)CrossRefGoogle Scholar
  13. 13.
    Z.S. Hosseini, A.I. Zad, A. Mortezaali, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens. Actuators B Chem. 207A, 865–871 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Mortezaali, R. Moradi, The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors. Sens. Actuators A Phys. 206, 30–34 (2014)CrossRefGoogle Scholar
  15. 15.
    N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, H. Ahmad, L.Y. Low, ZnO thin films for VOC sensing applications. Vacuum 85, 101–106 (2010)CrossRefGoogle Scholar
  16. 16.
    I. Elmi, S. Zampolli, E. Cozzani, F. Mancarella, G.C. Cardinali, Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sens. Actuators B Chem. 135, 342–351 (2008)CrossRefGoogle Scholar
  17. 17.
    N. Kilinc, O. Cakmak, A. Kosemen, E. Ermek, S. Ozturk, Y. Yerli, Z.Z. Ozturk, H. Urey, Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuators B Chem. 202, 357–364 (2014)CrossRefGoogle Scholar
  18. 18.
    Y.V. Kaneti, J. Yue, X. Jiang, A. Yu, Controllable synthesis of ZnO nanoflakes with exposed (1010) for enhanced gas sensing performance. J. Phys. Chem. C 117, 13153–13162 (2013)CrossRefGoogle Scholar
  19. 19.
    W. Guo, T. Liu, H. Zhang, R. Sun, Y. Chen, W. Zeng, Z. Wang, Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sens. Actuators B Chem. 166–167, 492–499 (2012)CrossRefGoogle Scholar
  20. 20.
    K.M. Kim, H.R. Kim, K.I. Choi, H.J. Kim, J.H. Lee, ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor applications. Sens. Actuators B Chem. 155, 745–751 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Ma, R. Li, C. Lv, W. Xu, X. Gou, Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications. J. Hazard. Mater. 192, 730–740 (2011)CrossRefGoogle Scholar
  22. 22.
    M.R. Alenezi, T.H. Alzanki, A.M. Almeshal, A.S. Alshammari, M.J. Beliatis, S.J. Henley, S.R.P. Silva, Hierarchically designed ZnO nanostructure based high performance gas sensors. RSC Adv 4, 49521–49528 (2014)CrossRefGoogle Scholar
  23. 23.
    M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235–247 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Zhang, R. Wu, Z. Chen, G. Liu, Z. Zhang, Z. Jiao, Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties. CrystEngComm 14, 1775–1782 (2012)CrossRefGoogle Scholar
  25. 25.
    Z. Chen, Z. Lin, Y. Hong, N. Li, M. Xu, Hydrothermal synthesis of hierarchically porous Rh-doped ZnO and its high gas sensing performance to acetone. J. Mater. Sci. Mater. Electron. (2015). doi: 10.1007/s10854-015-4069-x Google Scholar
  26. 26.
    D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, B. Cao, Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction. Sens. Actuators B Chem. 200, 288–296 (2014)CrossRefGoogle Scholar
  27. 27.
    D.X. Ju, H.Y. Xu, J. Zhang, J. Guo, B.Q. Cao, Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sens. Actuators B Chem. 201, 444–451 (2014)CrossRefGoogle Scholar
  28. 28.
    S.L. Zhang, J.O. Lim, J.S. Huh, J.S. Noh, W. Lee, Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys. 13S2, S156–S161 (2013)CrossRefGoogle Scholar
  29. 29.
    W. Guo, T. Liu, Z. Guo, W. Zeng, Y. Chen, Z. Wang, Hydrothermal synthesis of ultrathin ZnO nanosheets and their gas-sensing properties. J. Mater. Sci. Mater. Electron. 24, 1764–1769 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Du, R. Zhao, S. Chen, H. Wang, J. Li, Z. Zhu, Self-assembly of gridlike zinc oxide lamellae for chemical-sensing applications. ACS Appl Mater. Interfaces 7, 5870–5878 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Zou, L. Hu, Y. Qiu, G. Cao, J. Yu, L. Wang, H. Zhang, B. Yin, L. Xu, High performance of 1-D ZnO microwire with curve-side hexagon as ethanol gas sensor. J. Mater. Sci. Mater. Electron. 26, 4908–4912 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Li, H. Zhang, L. Hu, Y. Luo, Y. Zhao, Y. Qiu, J. Ji, L. Yue, A novel ethanol gas sensor based on ZnO microwire. J. Mater. Sci. Mater. Electron. 24, 4812–4816 (2013)CrossRefGoogle Scholar
  33. 33.
    D. Calestani, R. Mosca, M. Zanichelli, M. Villani, A. Zappettini, Aldehyde detection by ZnO tetrapod-based gas sensors. J. Mater. Chem. 21, 15532–15536 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Tian, F. Yang, D. Zeng, C. Xie, Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties. J. Phys. Chem. C 116, 10586–10591 (2012)CrossRefGoogle Scholar
  35. 35.
    L.J. Bie, X.N. Yan, J. Yin, Y.Q. Duan, Z.H. Yuan, Nanopillar ZnO gas sensor for hydrogen and ethanol. Sens. Actuators B Chem. 126, 604–608 (2007)CrossRefGoogle Scholar
  36. 36.
    Z. Wen, L. Zhu, Z. Zhang, Z. Ye, Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays. Sens. Actuators B Chem. 208, 112–121 (2015)CrossRefGoogle Scholar
  37. 37.
    W. Guo, T. Liu, L. Huang, H. Zhang, Q. Zhou, W. Zeng, HMT assisted hydrothermal synthesis of various ZnO nanostructures: structure, growth and gas sensor properties. Physica E 44, 680–685 (2011)CrossRefGoogle Scholar
  38. 38.
    X. Tian, L. Yang, X. Qing, K. Yu, X. Wang, Trace level detection of hydrogen gas using birnessite-type manganese oxide. Sens. Actuators B Chem. 207A, 34–42 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Grasset, N. Saito, D. Li, D. Park, I. Sakaguchi, N. Ohashi, H. Haneda, T. Roisnel, S. Mornet, E. Duguet, Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. J. Alloys Comp. 360, 298–311 (2003)CrossRefGoogle Scholar
  40. 40.
    F. Meng, N. Hou, S. Ge, B. Sun, Z. Jin, W. Shen, L. Kong, Z. Guo, Y. Sun, H. Wu, C. Wang, M. Li, Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs). J. Alloys Comp. 626, 124–130 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  2. 2.SiChuan HaiTian Industry Co. LtdMianyangPeople’s Republic of China

Personalised recommendations