Advertisement

Structural, morphological and optical properties of TiO2:Mn thin films prepared by spray pyrolysis technique

  • Wafa Naffouti
  • Abdelhak Jrad
  • Tarek Ben Nasr
  • Souad Ammar
  • Najoua Turki-Kamoun
Article
  • 187 Downloads

Abstract

Mn-doped TiO2 thin films were deposited on glass substrates by spray pyrolysis technique at different manganese doping concentrations \(\left( {y = \frac{{\left[ {Mn^{2 + } } \right]}}{{\left[ {Ti^{4 + } } \right]}} = 0, 2, 4, 6\, and\,10\;\% } \right)\). X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, spectrophotometry and spectrofluorimetry techniques were used in order to study the effect of Mn doping on the structural, morphological and optical properties of TiO2 thin films. It is found that better film crystallinity was obtained for Mn doping ratio of about 2 at%. Morphological studies revealed that the grown layers exhibited uniform and compact surfaces. An indirect band gap of about 3.44 eV was obtained according to the optical studies. Film thickness, refractive index and extinction coefficient were determined using envelope method. Both Wemple–Di Domenico single oscillator and Spitzer–Fan models were used to study the effect of manganese doping on some optical constants. All photoluminescence spectra showed several emissions in both UV and visible regions.

Keywords

TiO2 Refractive Index TiO2 Thin Film Urbach Energy Spray Pyrolysis Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Naffouti, T.B. Nasr, A. Mehdi, N. Kamoun-Turki, J. Electron. Mater. 43, 4033 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Ding, B. Gao, D. Shan, Y. Sun, S. Cosnier, Biosens. Bioelectron. 39, 342 (2013)CrossRefGoogle Scholar
  3. 3.
    Z. Lu, X. Jiang, B. Zhou, X. Wu, L. Lu, Appl. Surf. Sci. 257, 10715 (2011)CrossRefGoogle Scholar
  4. 4.
    J.B. Naceur, R. Mechiakh, F. Bousbih, R. Chtourou, Appl. Surf. Sci. 257, 10699 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Ramadossa, S.J. Kim, J. Alloys Comp. 561, 262 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Hou, P. Liu, Y. Li, C. Wu, Thin Solid Films 517, 4926 (2009)CrossRefGoogle Scholar
  7. 7.
    I.O. Acik, A. Katerski, A. Mere, J. Aarik, A. Aidla, T. Dedova, M. Krunks, Thin Solid Films 517, 2443 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. Hu, H.L. Tsai, C.L. Huang, J. Eur. Ceram. Soc. 23, 691 (2003)CrossRefGoogle Scholar
  9. 9.
    L. Lin, H. Wang, H. Luo, P. Xu, J. Photochem. Photobiol. A Chem. 307, 88 (2015)CrossRefGoogle Scholar
  10. 10.
    N. Ahmadi, A. Nemati, M.S. Hashjin, Mater. Sci. Semicond. Process 26, 41 (2014)CrossRefGoogle Scholar
  11. 11.
    C.Y.W. Lin, D. Channeai, P. Koshy, A. Nakaruk, C.C. Sorrell, Phys. E 44, 1969–1972 (2012)CrossRefGoogle Scholar
  12. 12.
    B. Choudhury, A. Choudhury, Curr. Appl. Phys. 13, 1025 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, Solar Energy 106, 159 (2014)CrossRefGoogle Scholar
  14. 14.
    A.M. Selman, Z. Hassan, Superlattices Microstruct. 64, 27 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Kumar, S. Gautam, G.W. Kim, F. Ahmed, M.S. Anwar, K.H. Chae, H.K. Choi, H. Chung, B.H. Koo, Appl. Surf. Sci. 257, 10557 (2011)CrossRefGoogle Scholar
  16. 16.
    R. Dholam, N. Patel, M. Adami, A. Miotello, Int. J. Hydrog. Energy 34, 5337 (2009)CrossRefGoogle Scholar
  17. 17.
    W.W. Xu, R. Kershaw, K. Dwight, A. Wold, Mat. Res. Bull. 25, 1385 (1990)CrossRefGoogle Scholar
  18. 18.
    L. Castañeda, A. Maldonado, M. de la L. Olvera, Sens. Actuators B 133, 687 (2008)Google Scholar
  19. 19.
    A. Mani, C. Huisman, A. Goossens, J. Schoonman, J. Phys. Chem. B 112, 10086 (2008)CrossRefGoogle Scholar
  20. 20.
    W. Naffouti, T.B. Nasr, O. Briot, N. Kamoun-Turki, J. Electron. Mater. 44, 3661 (2015)CrossRefGoogle Scholar
  21. 21.
    M.J. Buerger, X-ray Crystallography (Wiley Inc, New York, 1960), p. 23Google Scholar
  22. 22.
    S. Louidi, F.Z. Bentayeb, W. Tebib, J.J. Sunol, A.M. Mercier, J.M. Grenèche, J. Non-Cryst, Solids 356, 1052 (2010)Google Scholar
  23. 23.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  24. 24.
    G.D. Cody, Semiconductors and Semimetals, vol. 21 B, chap. 2, ed. by J.I. Pankove (Academic Press, London, 1984), p. 25Google Scholar
  25. 25.
    F. Yakuphanoglu, A. Cukurovalib, I. Yilmaz, Opt. Mater. 27, 1363 (2005)CrossRefGoogle Scholar
  26. 26.
    K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Appl. Surf. Sci. 344, 89 (2015)CrossRefGoogle Scholar
  27. 27.
    J.C. Manifacier, J. Gassiot, J.P. Fillard, J. Phys. E Sci. Instrum. 9, 1002 (1976)CrossRefGoogle Scholar
  28. 28.
    D. Abdelkader, M.B. Rabeh, N. Khemiri, M. Kanzari, Mater. Sci. Semicond. Process. 21, 14 (2014)CrossRefGoogle Scholar
  29. 29.
    S.K. Tripathy, Opt. Mater. 46, 240 (2015)CrossRefGoogle Scholar
  30. 30.
    N.M. Ravindra, V.K. Srivastava, Infrared Phys. 19, 603 (1979)CrossRefGoogle Scholar
  31. 31.
    B. Houng, C.C. Liu, M.T. Hung, Ceram. Int. 39, 3669 (2013)CrossRefGoogle Scholar
  32. 32.
    A.V. Manole, M. Dobromir, M. Gîrtan, M. Mallet, G. Rusu, D. Luca, Ceram. Int. 39, 4771 (2013)CrossRefGoogle Scholar
  33. 33.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)CrossRefGoogle Scholar
  34. 34.
    W.G. Spitzer, H.Y. Fan, Phys. Rev. 106, 882 (1957)CrossRefGoogle Scholar
  35. 35.
    A.F. Qasrawi, Semicond. Sci. Technol. 20, 765 (2005)CrossRefGoogle Scholar
  36. 36.
    A. Ianculescu, M. Gartner, B. Despax, V. Bley, T. Lebey, R. Gavrila, M. Modreanu, Appl. Surf. Sci. 253, 344 (2006)CrossRefGoogle Scholar
  37. 37.
    N.K. Sahoo, S. Thakur, R.B. Tokas, Appl. Surf. Sci. 253, 618 (2006)CrossRefGoogle Scholar
  38. 38.
    Q. Xiao, Z. Si, Z. Yu, G. Qiu, Mater. Sci. Eng. B 137, 189 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wafa Naffouti
    • 1
  • Abdelhak Jrad
    • 1
  • Tarek Ben Nasr
    • 1
  • Souad Ammar
    • 2
  • Najoua Turki-Kamoun
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.Interface Traitement, Organisation et Dynamique des SystèmesUniversité Paris 7ParisFrance

Personalised recommendations