Advertisement

Energy-storage performance of PbO–B2O3–SiO2 added (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric ceramics prepared by microwave sintering method

  • Liming Chen
  • Xihong Hao
  • Qiwei Zhang
  • Shengli An
Article

Abstract

In this work, (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 (PBLZST) antiferroelectric (AFE) ceramics with the addition of PbO–B2O3–SiO2 raw glass powder as sintering aid were prepared via the microwave sintering method. The effects of glass content on the electrical properties and energy-storage performance of the ceramics were investigated in detail. With the glass content increasing, dielectric constant of the ceramics gradually decreased, while the breakdown strength increased. A maximum recoverable energy-storage density was about 2.3 J/cm3 and the corresponding efficiency was about 76.8 % to be achieved in the ceramics with 3-wt% glass at room temperature. The energy density of the PBLZST AFE ceramic with 3-wt% glass is 1.3 times as that (1.8 J/cm3) of the pure specimens. These results indicated that the energy-storage performance of AFE ceramics could be improved by adding proper glass and selecting novel sintering method.

Keywords

B2O3 Glass Content Stannic Oxide Sinopharm Chemical Reagent Company Moderate Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge the financial support from the Program for New Century Excellent Talents in University, the Natural Science Foundation of Inner Mongolia (2015JQ04), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, the Grassland Talent Plan of Inner Mongolia Autonomous Region, and the Innovation Fund of Inner Monglia University of Science and Technology No. 2014QNGG01.

References

  1. 1.
    X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Chen, F. Cao, Y. Gu, H. Zhang, G. Yu, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, Dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 antiferroelectric bulk ceramics. J. Am. Ceram. Soc. 4, 1–4 (2012)Google Scholar
  3. 3.
    S. Chen, X. Wang, T. Yang, J. Wang, Composition-dependent dielectric properties and energy storage performance of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. J. Mater. Sci. Mater. Electron. 32, 307–310 (2014)Google Scholar
  4. 4.
    J. Wang, T. Yang, S. Chen, X. Yao, Small hysteresis and high energy storage power of antiferroelectric ceramics. Funct. Mater. Lett. 1, 1350064 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Yi, L. Zhang, B. Xie, S. Jiang, The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics. Ceram. Int. 118, 124107 (2015)Google Scholar
  6. 6.
    M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)CrossRefGoogle Scholar
  7. 7.
    S.E. Young, J.Y. Zhang, W. Hong, X. Tan, Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitors. Appl. Phys. Lett. 113, 054101 (2013)Google Scholar
  8. 8.
    F. Gao, X. Dong, C. Mao, F. Cao, G. Wang, Phase diagram of (1 −x%)(0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3)–x%MnO2 lead-free anti-ferroelectric ceramics. Solid State Commun. 152, 1670–1672 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Jiang, D. Zhou, S. Gong, W. Lu, Study of piezoelectric ceramic materials for high-temperature and high-frequency applications. Sens. Actuators A 69, 1–4 (1998)CrossRefGoogle Scholar
  10. 10.
    L. Zhang, X. Hao, L. Zhang, J. Yang, S. An, Microstructure and energy-storage performance of BaO–B2O3–SiO2 glass added (Na0.5Bi0.5)TiO3 thick films. J. Mater. Sci. Mater. Electron. 24, 3830–3835 (2013)CrossRefGoogle Scholar
  11. 11.
    M.S. Mirshekarloo, K. Yao, T. Sritharan, Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010)CrossRefGoogle Scholar
  12. 12.
    Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, G. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Chen, T. Yang, J. Wang, X. Yao, Effects of glass additions on energy storage performance of (Pb0.97La0.02)(Zr0.92Sn0.05Ti0.03)O3 antiferroelectric ceramics. J. Mater. Sci. Mater. Electron. 12, 4764–4768 (2013)CrossRefGoogle Scholar
  14. 14.
    Q. Zhang, X. Liu, Y. Zhang, X. Song, J. Zhu, I. Baturin, J. Chen, Effect of barium content on dielectric and energy storage properties of (Pb, La, Ba)(Zr, Sn, Ti)O3 ceramics. Ceram. Int. 41, 3030–3035 (2015)CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Improved energy storage density in barium strontium titanate by addition of BaO–SiO2–B2O3 glass. J. Am. Ceram. Soc. 92, 1871–1873 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, S. Jiang, B. Fan, G. Zhang, High energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3–(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics. Ceram. Int. 41, 1139–1144 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Zhang, D. Zhu, X. Zhang, L. Zhang, J. Yi, B. Xie, Y. Zeng, Q. Li, Q. Wang, S. Jiang, High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc. 4, 1–7 (2014)Google Scholar
  18. 18.
    Y. Wang, X. Hao, J. Xu, Effects of PbO insert layer on the microstructure and energy storage performance of (042)-preferred PLZT antiferroelectric thick films. J. Mater. Res. 27, 1770–1775 (2012)CrossRefGoogle Scholar
  19. 19.
    N. Zhang, Y.J. Feng, Z. Xu, Effects of barium modification on dielectric and ferroelectric properties of PLZST ceramics. Mater. Res. 15, 240–243 (2011)Google Scholar
  20. 20.
    W. Jinfei, Y. Tongqing, C. Shengchen, L. Gang, Xi Yao, Characteristics and dielectric properties of (Pb0.97–xLa0.02Bax)(Zr0.72Sn0.22Ti0.06)O3 ceramics. J. Alloys Compd. 539, 280–283 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Rhee, D. Agrawal, T. Shrout, M. Thumm, Investigation of high microwave frequency (2.45 GHz, 30 GHz) sintering for Pb-based ferroelectrics and microscale functional devices. Ferroelectrics 261, 15–20 (2001)CrossRefGoogle Scholar
  22. 22.
    P.-H. Chena, H.-C. Pan, C.-C. Chou, I.-N. Lin, Microstructures and properties of semiconductive (Pb0 .6Sr0.4)TiO3 ceramics using PbTiO3-coated SrTiO3 powders. J. Eur. Ceram. Soc. 21, 1905–1908 (2001)CrossRefGoogle Scholar
  23. 23.
    P.K. Sharma, Z. Ounaies, V.V. Varadan, V.K. Varadan, Dielectric and piezoelectric properties of microwave sintered PZT. Smart Mater. Struct. 10, 878–883 (2001)CrossRefGoogle Scholar
  24. 24.
    M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175–189 (2010)CrossRefGoogle Scholar
  25. 25.
    Q. Zhang, T. Yang, Y. Zhang, J. Wang, X. Yao, Enhanced antiferroelectric stability and electric-field-induced strain properties in rare earth-modified Pb(Zr0.63Sn0.26Ti0.11)O3 ceramics. Appl. Phys. Lett. 102, 222904 (2013)CrossRefGoogle Scholar
  26. 26.
    E. Breval, C. Wang, J.P. Dougherty, K.W. Gachigi, PLZT phases near lead zirconate: 1. determination by X-ray diffraction. J. Am. Ceram. Soc. 88, 437–442 (2005)CrossRefGoogle Scholar
  27. 27.
    B. Wu, D. Xiao, J. Wu, Q. Gou, J. Zhu, Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3–x wt% ZnO lead-free piezoelectric ceramics sintered at lower temperature. J. Mater. Sci. Mater. Electron. 26, 2323–2328 (2015)CrossRefGoogle Scholar
  28. 28.
    R.J. Ong, D.A. Payne, N.R. Sottos, Processing effects for integrated PZT: residual stress, thickness, and dielectric properties. J. Am. Ceram. Soc. 88, 2839–2847 (2005)CrossRefGoogle Scholar
  29. 29.
    Q. Zhang, S. Chen, M. Fan, S. Jiang, T. Yang, J. Wang, G. Li, X. Yao, Large electric-induced pyroelectric properties in Mn-doped (Pb0.87La0.02Ba0.1)(Zr0.75Sn0.16Ti0.09)O3 ceramics. J. Alloys Compd. 547, 29–32 (2013)CrossRefGoogle Scholar
  30. 30.
    Q. Zhang, Y. Zhang, T. Yang, S. Jiang, J. Wang, Shengchen Chen, Gang Lia, Xi Yao, Effect of compositional variations on phase transition and electric field-induced strain of (Pb, Ba) (Nb, Zr, Sn, Ti)O3 ceramics. Ceram. Int. 39, 5403–5406 (2013)CrossRefGoogle Scholar
  31. 31.
    T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15, 1767–1769 (1996)CrossRefGoogle Scholar
  32. 32.
    Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Hao, P. Wang, X. Zhang, J. Xu, Microstructure and energy-storage performance of PbO–B2O3–SiO2–ZnO glass added (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thick films. Mater. Res. Bull. 48, 84–88 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Luo, J. Du, Q. Tang, C. Mao, Lead sodium niobate glass-ceramic dielectrics and internal electrode structure for high energy storage density capacitors. IEEE Trans. Electron Devices 55, 3549 (2008)CrossRefGoogle Scholar
  35. 35.
    G. Li, T. Yang, J. Wang, Z. Sun, J. Guo, Effect of glass additive on electrical properties of PLZST antiferroelectric ceramics. Key Eng. Mater. 512–515, 1300–1303 (2012)CrossRefGoogle Scholar
  36. 36.
    H.-P. Jeon, S.-K. Lee, S.-W. Kim, D.-K. Cho, Effects of BaO–B2O3–SiO2 glass additive on densification and dielectric properties of BaTiO3 ceramics. Mater. Chem. Phys. 94, 185–189 (2005)CrossRefGoogle Scholar
  37. 37.
    S. Patel, A. Chauhan, R. Vaish, Improved electrical energy storage density in vanadium doped BaTiO3 bulk ceramics by addition of 3BaO–3TiO2–B2O3 glass. Energy Technol. 3, 70–76 (2015)CrossRefGoogle Scholar
  38. 38.
    L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Liming Chen
    • 1
  • Xihong Hao
    • 1
  • Qiwei Zhang
    • 1
  • Shengli An
    • 1
  1. 1.School of Materials and MetallurgyInner Mongolia University of Science and TechnologyBaotouChina

Personalised recommendations