Skip to main content

Advertisement

Log in

Property optimization of nano TiO2-based composite glass ceramics for energy-storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this search, the nanocomposite of the rutile nano TiO2 and alkali-free glass (CaO–MgO–Al2O3–SiO2) were successfully produced by the method of sol–gel, which were sintered at 1200 °C for 2 h. The dielectric properties of the composites were studied. The permittivity of the composite with 15 % alkali-free glass addition is 114, while the breakdown voltage is 52.2 kV/mm and the energy density reaches 1.08 J/cm3 with low loss (<0.01), which is 1.4 times higher than that of pure TiO2 (0.76 J/cm3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Ortega, A. Kumar, J.F. Scott, B.C. Douglas, M. Tomazawa, K. Shalini, D.G.B. Diestra, R.S. Katiyar, Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys. Condens. Matter 24(44), 445901 (2012)

    Article  Google Scholar 

  2. Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass–ceramics. J. Am. Ceram. Soc. 94(6), 1805–1810 (2011)

    Article  Google Scholar 

  3. D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95(4), 1348–1355 (2012)

    Article  Google Scholar 

  4. S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int. 39(5), 5571–5575 (2013)

    Article  Google Scholar 

  5. Q. Zhang, Y. Zhang, X. Wang, T. Ma, Z. Yuan, Influence of sintering temperature on energy storage properties of BaTiO3–(Sr1−1.5 xBix) TiO3 ceramics. Ceram. Int. 38(6), 4765–4770 (2012)

    Article  Google Scholar 

  6. W. Huebner, S.C. Zhang, High energy density dielectrics for symmetric blumleins. In: Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics, vol. 2 (2000), pp. 833–836

  7. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293(5330), 673–676 (2001)

    Article  Google Scholar 

  8. S. Krohns et al., The route to resource-efficient novel materials. Nat. Mater. 10, 899–901 (2011)

    Article  Google Scholar 

  9. R. Macklin, Electrostatic Energy Storage. NASA STI/Recon Technical Report N, 77 (1976), p. 24598

  10. W. Huebner, S.C. Zhang, B. Gilmore, M.L. Krogh, B.C. Schultz, R.C. Pate et al., High breakdown strength, multilayer ceramics for compact pulsed power applications. In: 12th IEEE International Pulsed Power Conference, Digest of Technical Papers, vol. 2 (1999), pp. 1242–1245

  11. Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro et al., Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. In: Ppc-2003: 14th IEEE International Pulsed Power Conference, vols. 1, 2, Digest of Technical Papers, vols. 1, 2 (2003), pp. 719–722

  12. H.Y. Lee, K.H. Cho, H.-D. Nam, Grain size and temperature dependence of electrical breakdown in BaTiO3 ceramic. Ferroelectrics 334(1), 165–169 (2006)

    Article  Google Scholar 

  13. A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90(5), 1504–1510 (2007)

    Article  Google Scholar 

  14. H.-I. Hsiang, C.-S. Hsi, C.-C. Huang, S.-L. Fu, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC. J. Alloys Compd. 459(1–2), 307–310 (2008)

    Article  Google Scholar 

  15. X. Su, M. Tomozawa, J.K. Nelson, D.B. Chrisey, Effect of crystallizable glass addition on sintering and dielectric behaviors of barium titanate ceramics. J. Mater. Sci. Mater. Electron. 24(6), 2135–2140 (2013)

    Article  Google Scholar 

  16. J.C.C. Lin, W.-C.J. Wei, Low-temperature sintering of BaTiO3 with Mn–Si–O glass. J. Electroceram. 25(2), 179–187 (2010)

    Article  Google Scholar 

  17. V.S. Puli, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, D.B. Chrisey, M. Tomozawa, Dielectric breakdown of BaO–B2O3–ZnO–[(BaZr0.2Ti0.80)O3]0.85[(Ba0.70Ca0.30)TiO3]0.15 glass-ceramic composites. J. Non-Cryst. Solids 358(24), 3510–3516 (2012)

    Article  Google Scholar 

  18. R.D. Weir et al. Electrical-Energy-Storage Unit (EESU) Utilizing Ceramic and Integrated-Circuit Technologies for Replacement of Electrochemical Batteries. US7033406 April 25 (2006)

  19. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15(20), 1767–1769 (1996)

    Article  Google Scholar 

  20. E.K. Beauchamp, Effect of microstructure on pulse strength of MgO. J. Am. Ceram. Soc. 54(10), 484–487 (1971)

    Article  Google Scholar 

  21. G. Mazzanti, G.C. Montanari, F. Peruzzotti, A. Zaopo, Some remarks regarding the test cells used for electric strength measurement. In: Electrical Insulation, 1996, Conference Record of the 1996 IEEE International Symposium, Montreal, Canada, vol. 2 (1996), pp. 474–477

Download references

Acknowledgments

This work is supported by the State Key Program of National Natural Science of China (Grant Nos. 50932002 and 51172035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Zhang, J., Liu, J. et al. Property optimization of nano TiO2-based composite glass ceramics for energy-storage applications. J Mater Sci: Mater Electron 27, 4465–4469 (2016). https://doi.org/10.1007/s10854-016-4318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4318-7

Keywords

Navigation