Property optimization of nano TiO2-based composite glass ceramics for energy-storage applications

  • Meng Wei
  • Jihua Zhang
  • Jianfeng Liu
  • Jiapeng Huang
  • Hongwei Chen
  • Chuanren Yang


In this search, the nanocomposite of the rutile nano TiO2 and alkali-free glass (CaO–MgO–Al2O3–SiO2) were successfully produced by the method of sol–gel, which were sintered at 1200 °C for 2 h. The dielectric properties of the composites were studied. The permittivity of the composite with 15 % alkali-free glass addition is 114, while the breakdown voltage is 52.2 kV/mm and the energy density reaches 1.08 J/cm3 with low loss (<0.01), which is 1.4 times higher than that of pure TiO2 (0.76 J/cm3).


TiO2 Rutile Pure TiO2 Breakdown Strength Energy Storage Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the State Key Program of National Natural Science of China (Grant Nos. 50932002 and 51172035).


  1. 1.
    N. Ortega, A. Kumar, J.F. Scott, B.C. Douglas, M. Tomazawa, K. Shalini, D.G.B. Diestra, R.S. Katiyar, Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys. Condens. Matter 24(44), 445901 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, X. Dai, Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass–ceramics. J. Am. Ceram. Soc. 94(6), 1805–1810 (2011)CrossRefGoogle Scholar
  3. 3.
    D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95(4), 1348–1355 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int. 39(5), 5571–5575 (2013)CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, Y. Zhang, X. Wang, T. Ma, Z. Yuan, Influence of sintering temperature on energy storage properties of BaTiO3–(Sr1−1.5 xBix) TiO3 ceramics. Ceram. Int. 38(6), 4765–4770 (2012)CrossRefGoogle Scholar
  6. 6.
    W. Huebner, S.C. Zhang, High energy density dielectrics for symmetric blumleins. In: Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics, vol. 2 (2000), pp. 833–836Google Scholar
  7. 7.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293(5330), 673–676 (2001)CrossRefGoogle Scholar
  8. 8.
    S. Krohns et al., The route to resource-efficient novel materials. Nat. Mater. 10, 899–901 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Macklin, Electrostatic Energy Storage. NASA STI/Recon Technical Report N, 77 (1976), p. 24598Google Scholar
  10. 10.
    W. Huebner, S.C. Zhang, B. Gilmore, M.L. Krogh, B.C. Schultz, R.C. Pate et al., High breakdown strength, multilayer ceramics for compact pulsed power applications. In: 12th IEEE International Pulsed Power Conference, Digest of Technical Papers, vol. 2 (1999), pp. 1242–1245Google Scholar
  11. 11.
    Y. Ye, S.C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, P. Castro et al., Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. In: Ppc-2003: 14th IEEE International Pulsed Power Conference, vols. 1, 2, Digest of Technical Papers, vols. 1, 2 (2003), pp. 719–722Google Scholar
  12. 12.
    H.Y. Lee, K.H. Cho, H.-D. Nam, Grain size and temperature dependence of electrical breakdown in BaTiO3 ceramic. Ferroelectrics 334(1), 165–169 (2006)CrossRefGoogle Scholar
  13. 13.
    A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90(5), 1504–1510 (2007)CrossRefGoogle Scholar
  14. 14.
    H.-I. Hsiang, C.-S. Hsi, C.-C. Huang, S.-L. Fu, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC. J. Alloys Compd. 459(1–2), 307–310 (2008)CrossRefGoogle Scholar
  15. 15.
    X. Su, M. Tomozawa, J.K. Nelson, D.B. Chrisey, Effect of crystallizable glass addition on sintering and dielectric behaviors of barium titanate ceramics. J. Mater. Sci. Mater. Electron. 24(6), 2135–2140 (2013)CrossRefGoogle Scholar
  16. 16.
    J.C.C. Lin, W.-C.J. Wei, Low-temperature sintering of BaTiO3 with Mn–Si–O glass. J. Electroceram. 25(2), 179–187 (2010)CrossRefGoogle Scholar
  17. 17.
    V.S. Puli, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, D.B. Chrisey, M. Tomozawa, Dielectric breakdown of BaO–B2O3–ZnO–[(BaZr0.2Ti0.80)O3]0.85[(Ba0.70Ca0.30)TiO3]0.15 glass-ceramic composites. J. Non-Cryst. Solids 358(24), 3510–3516 (2012)CrossRefGoogle Scholar
  18. 18.
    R.D. Weir et al. Electrical-Energy-Storage Unit (EESU) Utilizing Ceramic and Integrated-Circuit Technologies for Replacement of Electrochemical Batteries. US7033406 April 25 (2006)Google Scholar
  19. 19.
    T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15(20), 1767–1769 (1996)CrossRefGoogle Scholar
  20. 20.
    E.K. Beauchamp, Effect of microstructure on pulse strength of MgO. J. Am. Ceram. Soc. 54(10), 484–487 (1971)CrossRefGoogle Scholar
  21. 21.
    G. Mazzanti, G.C. Montanari, F. Peruzzotti, A. Zaopo, Some remarks regarding the test cells used for electric strength measurement. In: Electrical Insulation, 1996, Conference Record of the 1996 IEEE International Symposium, Montreal, Canada, vol. 2 (1996), pp. 474–477Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meng Wei
    • 1
    • 2
  • Jihua Zhang
    • 1
    • 2
  • Jianfeng Liu
    • 1
    • 2
  • Jiapeng Huang
    • 1
    • 2
  • Hongwei Chen
    • 1
    • 2
  • Chuanren Yang
    • 1
    • 2
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Collaboration Innovation Center of Electric Materials and DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations