Effect of substrate temperature on nebulized spray pyrolysised In2S3 thin films

  • J. Raj Mohamed
  • C. Sanjeeviraja
  • L. Amalraj


Nebulized spray pyrolysis is a simple and cost effective technique for the preparation of In2S3 thin films. In2S3 compound thin films were deposited on glass substrates at substrate temperatures from 200 to 350 °C in steps of 50 °C by nebulized spray pyrolysis technique. These films were shiny, thin and uniform, which were evidenced by specular reflections of white light due to multiple internal reflections of coherent rays. They were characterized by X-ray diffraction (XRD), optical transmittance, scanning electron microscope imaging (SEM), energy dispersive analysis by X-rays and electrical conductivity. Cubic structure with preferential orientation along (111) plane was observed from XRD analysis. SEM analysis revealed that all the films have no voids and cracks. Direct band gap values were found to decrease up to 2.69 eV with increase in substrate temperature from 200 to 300 °C, but increased further, whereas the indirect band gap values were found to increase up to 2.14 eV with increase in substrate temperature from 200 to 300 °C, and decreased further. All the films were found as n-type semiconductors. The resistivity of all the samples decreased with increase in substrate temperature. A maximum carrier concentration value of 7.36 × 1018 cm−3 was obtained for the film grown at substrate temperature of 300 °C. The carrier mobility was increased up to 86.2 cm2/Vs by increasing the substrate temperature from 200 to 300 °C and then it decreased to 17.6 cm2/Vs at a substrate temperature of 350 °C.


Substrate Temperature Spray Pyrolysis Spray Pyrolysis Technique In2S3 Thin Film Spray Pyrolysis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Dr. N. Gopalakrishnan, Associate Professor, Department of Physics, NIT, Tiruchirappalli, India for analyzing the electrical characterization using Hall measurement instrument. One of the authors, Prof. C. Sanjeeviraja would like to thank CSIR, New Delhi, India for releasing Emeritus Scientist Scheme.


  1. 1.
    N. Naghavi, S. Spering, M. Powalla, B. Canava, D. Lincot, High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapour deposition (ALCVD). Prog. Photovolt. Res. Appl. 11, 437–443 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Gall, N. Barreau, S. Harel, J.C. Bernede, J. Kessler, Material analysis of PVD-grown indium sulphide buffer layers for Cu(In, Ga)Se2-based solar cells. Thin Solid Films 480–481, 138–141 (2005)CrossRefGoogle Scholar
  3. 3.
    N. Barreau, Indium sulfide and relatives in the world of photovoltaics. Sol. Energy 83, 363–371 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Spiering, A. Eicke, D. Hariskos, M. Powalla, N. Naghavi, D. Lincot, Large-area Cd-free CIGS solar modules with In2S3 buffer layer deposited by ALCVD. Thin Solid Films 451–452, 562–566 (2004)CrossRefGoogle Scholar
  5. 5.
    I. Repins, M.A. Contreras, B. Egaas, C. Deltart, J. Scharf, C.L. Perkins, B.T.R. Noufi, 19.9 % efficient ZnO/CdO/CuInGaSe2 Solar Cell with 81.2 % fill factor. Prog. Photovolt. Res. Appln. 16, 235–239 (2008)CrossRefGoogle Scholar
  6. 6.
    D. Hariskos, M. Ruckh, U. Riihle, T. Walter, H.W. Schock, J. Hedstrom, L. Stolt, A novel cadmium free buffer layer for Cu (In, Ga)Se2 based solar cells. Sol. Energy Mater. Sol. C. 41(42), 345–353 (1996)CrossRefGoogle Scholar
  7. 7.
    N. Barreau, R. Bayon, J.C. Bernede, L. Assmann, 203rd Meeting of the Electrochemical Society., Paris, France, April 27–May 2, 2003Google Scholar
  8. 8.
    X. Meng, Y. Lu, X. Zhang, B. Yang, G. Yi, J. Jia, Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition. Appl. Surf. Sci. 258, 649–656 (2011)CrossRefGoogle Scholar
  9. 9.
    B. Yahmadi, N. Kamoun, C. Guasch, R. Bennaceur, Synthesis and characterization of nanocrystallized In2S3 thin films via CBD technique. Mater. Chem. Phys. 127, 239–247 (2011)CrossRefGoogle Scholar
  10. 10.
    Z. Gao, J. Liu, H. Wang, Investigation on growth of In2S3 thin films by chemical bath deposition. Mater. Sci. Semicond. Process. 15, 187–193 (2012)CrossRefGoogle Scholar
  11. 11.
    D. Abou-Ras, G. Kostroz, A. Strohm, H.M. Schock, A.N. Tiwari, Interfacial layer formations between Cu (In, Ga)Se2 and InxSy layers. J. Appl. Phys. 98, 123512-1–123512-7 (2005)CrossRefGoogle Scholar
  12. 12.
    Y. Yasaki, N. Sonoyama, T. Sakata, Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors. J. Electroanal. Chem. 469, 116–122 (1999)CrossRefGoogle Scholar
  13. 13.
    M. Kundakci, A. Ates, A. Astam, M. Yildirim, Structural, optical and electrical properties of CdS, Cd0.5In0.5S and In2S3 thin films grown by SILAR method. Phys. E 40, 600–605 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Calixto-Rodriguez, A. Tiburcio-Silver, A. Ortiz, A. Sanchez-Juarez, Optoelectronical properties of indium sulfide thin films prepared by spray pyrolysis for photovoltaic applications. Thin Solid Films 480–481, 133–137 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Buecheler, D. Corica, D. Guettler, A. Chirila, R. Verma, U. Muller, T.P. Niesan, J. Palm, A.N. Tiwari, Ultrasonically sprayed indium sulfide buffer layers for Cu (In, Ga)(S, Se)2 thin film solar cells. Thin Solid Films 517, 2312–2315 (2009)CrossRefGoogle Scholar
  16. 16.
    A.S. Cherian, M. Mathew, C.S. Kartha, K.P. Vijayakumar, Role of chlorine on the opto-electronic properties of β-In2S3 thin films. Thin Solid Films 518, 1779–1783 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Otto, A. Katerski, O. Volobujeva, A. Mere, M. Krunks, Indium sulfide thin films deposited by chemical spray of aqueous and alcoholic solutions. Energy Procedia 3, 63–69 (2011)CrossRefGoogle Scholar
  18. 18.
    C.S. Huang, C.S. Tao, C.H. Lee, Nebulized spray deposition of Pb(Zr, Ti)O thin films. J. Electrochem. Soc. 144, 3556–3561 (1997)CrossRefGoogle Scholar
  19. 19.
    S.P.S. Arya, H.E. Hintermann, Growth of Y-Ca-Ba-O superconducting thin films by ultrasonic nebulized spray pyrolysis. Thin Solid Films 193(194), 841–846 (1990)CrossRefGoogle Scholar
  20. 20.
    T. Sall, B.M. Soucase, M. Mollar, B. Hartitti, M. Fahoume, Chemical spray pyrolysis of β-In2S3 thin films deposited at different temperatures. J. Phys. Chem. Solids 76, 100–104 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Fu, G. Wu, S. Song, Z. Song, X. Duo, C. Lin, Preparation and characterization of MgO thin films by a simple nebulized spray pyrolysis technique. Appl. Surf. Sci. 148, 223–228 (1999)CrossRefGoogle Scholar
  22. 22.
    R. Mariappan, V. Ponnuswamy, P. Suresh, Effect of doping concentration on the structural and optical properties of pure and tin-doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct. 52, 500–513 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, C. Sankar, Depositon and characterization of pure and Cd doped SnO2 thin films by the nebulizer spray pyrolysis (NSP) technique. Mater. Sci. Semicond. Process. 16, 825–832 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, Nanostructured GdxZn1−xO thin films by nebulizer spray pyrolysis technique: role of doping concentration on the structural and optical properties. Superlattices Microstruct. 59, 47–59 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Mariappan, V. Ponnuswamy, R. Suresh, P. Suresh, A. Chandra Bose, M. Ragavendar, Role of substrate temperature on the properties of Na-doped ZnO thin film nanorods and performance of ammonia gas sensors using nebulizer spray pyrolysis technique. J. Alloys Compd. 582, 387–391 (2014)CrossRefGoogle Scholar
  26. 26.
    E.E. Ebsenso, K. Sardar, M. Chandrasekhar, A.R. Raju, C.N.R. Raju, Thin films of Ln1−xSrxCoO3 (Ln = La, Nd and Gd) and SrRuO3 by nebulized spray pyrolysis. Solid State Sci. 2, 833–839 (2000)CrossRefGoogle Scholar
  27. 27.
    S.R.C. Vivekchand, L.M. Cele, F.L. Deepak, A.R. Raju, A. Govindaraj, Carbon nanotubes by nebulized spray pyrolysis. Chem. Phys. Lett. 386, 313–318 (2004)CrossRefGoogle Scholar
  28. 28.
    R. Mariappan, V. Ponnuswami, M. Ragavendar, Effects of substrate temperature on the properties of CdSnSe thin films deposited by nebulizer spray pyrolysis technique. Mater. Sci. Semicond. Process. 15, 199–205 (2012)CrossRefGoogle Scholar
  29. 29.
    V. Gowthami, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Structural and optical studies on nickel oxide thin film prepared by nebulizer spray technique. Phys. B Condens. Matter Phys. 452, 1–6 (2014)CrossRefGoogle Scholar
  30. 30.
    JCPDS diffraction data, file No. 65-0459Google Scholar
  31. 31.
    M. Kraini, N. Bouguila, I. Halidou, A. Timoumi, S. Alaya, Properties of In2O3 films obtained by thermal oxidation of sprayed In2S3. Mat. Sci. Semicond. Process. 16, 1388–1396 (2013)CrossRefGoogle Scholar
  32. 32.
    T.T. John, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Preparation of indium sulfide thin films by spray pyrolysis using a new precursor indium nitrate. Appl. Surf. Sci. 252, 1360–1367 (2005)CrossRefGoogle Scholar
  33. 33.
    V.G. Rajeshmon, N. Poornima, C.S. Kartha, K.P. Vijaya Kumar, Modification of the optoelectronic properties of sprayed In2S3 thin films by indium diffusion for application as buffer layer in CZTS based solar cell. J. Alloys Compd. 553, 239–244 (2013)CrossRefGoogle Scholar
  34. 34.
    K. Otto, A. Katerski, A. Mere, O. Volobujera, M. Krunks, Spray pyrolysis deposition of indium sulphide thin films. Thin Solid Films 519, 3055–3060 (2011)CrossRefGoogle Scholar
  35. 35.
    L. Zhang, W. Zhang, H. Yang, W. Zhao, W. Fu, H. Zhao, J. Ma, Growth studies and characterization of In2S3 films prepared by hydrothermal method and their conversion to In2O3 films. Mater. Chem. Phys. 130, 932–936 (2011)CrossRefGoogle Scholar
  36. 36.
    A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot Methods. Solid State Sci. 13, 251–256 (2011)CrossRefGoogle Scholar
  37. 37.
    L. Amalraj, C. Sanjeeviraja, M. Jayachandran, Spray pyrolysised tin disulphide thin film and characterization. J. Cryst. Growth 234, 683–689 (2002)CrossRefGoogle Scholar
  38. 38.
    T.T. John, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Spray pyrolyzed β-In2S3 thin fillm: effect of postdeposition annealing. Vacuum 80, 870–875 (2006)CrossRefGoogle Scholar
  39. 39.
    M.G. Sandoval-Paz, M. Sotelo-Lerma, J.J. Valenzuela-Jauregui, M. Flores-Acosta, R. Ramirez-Bon, Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique. Thin Solid Films 472, 5–10 (2005)CrossRefGoogle Scholar
  40. 40.
    S. Lugo-Loredo, Y. Pena-Mendez, M. Calixto-Rodriguez, S. Messina-Fernandez, Indium sulfide thin films as window layer in chemically deposited solar cells. Thin Solid Films 550, 110–113 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsV.H.N.S.N CollegeVirudhunagarIndia
  2. 2.Department of PhysicsAlagappa Chettiar College of Engineering and TechnologyKaraikudiIndia
  3. 3.Department of PhysicsH.H.The Rajah’s CollegePudukkottaiIndia

Personalised recommendations