Improved physical properties of spray pyrolysed Al:CdO nanocrystalline thin films

  • S. J. Helen
  • Suganthi Devadason
  • T. Mahalingam


Pure and Al doped CdO thin films were coated on glass substrate at 400 °C by spray pyrolysis method for various aluminium concentrations (3, 5, 10 and 15 wt%). Al doped CdO thin films were characterized by various techniques such as X-ray diffraction, SEM, UV–visible spectroscopy and Hall measurements. XRD diffraction patterns reveal that the films are polycrystalline in nature exhibiting face centered cubic structure. The prominent peak corresponds to (200) plane and the corresponding calculated crystallite size varies from 12 to 18 nm. SEM images show that the films exhibit grains of uniform size which are agglomerated for films with higher dopant concentration. It is found that the optical transmittance decreases with the increase in Al concentration and the optical energy band gaps vary from 2.08 to 2.49 eV for various Al doping concentration levels. Electrical studies done using Hall measurement system exhibit that the undoped and Al doped CdO films are n-type semiconductors with carrier concentration in the order of 1021 cm−3. The electrical resistivity of the Al:CdO films ranges from 4.903 × 10−3 to 9.358 × 10−3 Ω cm.


Crystallite Size Texture Coefficient Spray Pyrolysis Technique Spray Pyrolysis Method Stack Fault Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Karunya University for providing the characterization techniques to carry out the reported research work.


  1. 1.
    I. Akyuz, S. Kose, F. Atay, V. Bilgin, Mater. Sci. Semicond. Process. 13, 109 (2010)CrossRefGoogle Scholar
  2. 2.
    L. Zhoo, J. Lian, Y. Li, Q. Jiang, Appl. Surf. Sci. 252, 8451 (2006)CrossRefGoogle Scholar
  3. 3.
    I. Saadeddin, B. Pecquenard, J.P. Manaud, R. Decourt, C. Labrugere, T. Buffeteau, C. Campet, Appl. Surf. Sci. 253, 5240 (2007)CrossRefGoogle Scholar
  4. 4.
    N. Suchea, N. Katsarakis, S. Christoulakis, S. Nikolopoulou, G. Kiriakidis, Sens. Actuators B118, 135 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Ilican, M. Caglar, Y. Caglar, Optoelectron. Adv. Mater. Rapid Commun. 3, 135 (2009)Google Scholar
  6. 6.
    R. Kumaravel, S. Menaka, S.R.M. Snega, K. Ramamurthi, K. Jeganathan, Mater. Chem. Phys. 122, 444 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Kumaravel, S. Bhuvaneswari, K. Ramamurthi, V. Krishnakumar, Appl. Phys. A 109, 579 (2012)CrossRefGoogle Scholar
  8. 8.
    A.W. Metz, J.R. Ireland, J.G. Zheng, R.P.S.M. Lobo, Y. Yang, J. Ni, C.L. Stern, V.P. Dravid, N. Bontemps, C.R. Kannewurf, K.R. Poeppelmeier, T.J. Marks, J. Am. Chem. Soc. 126, 8477–8492 (2004)CrossRefGoogle Scholar
  9. 9.
    K.R. Murali, A. Kalaivanan, S. Perumal, N. Pillai, J. Alloys Compd. 503, 350 (2010)CrossRefGoogle Scholar
  10. 10.
    R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Curr. Appl. Phys. 9, 673 (2009)CrossRefGoogle Scholar
  11. 11.
    N. Wongcharoen, T. Gaewdang, T. Wongcharon, International Conference on Materials for Advanced Technologies 2011, Symposium O. Energy Procedia, vol. 15 (2012), p. 361Google Scholar
  12. 12.
    S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000)CrossRefGoogle Scholar
  13. 13.
    C.H. Bhosale, A.V. Kambale, A.V. Kokate, K.Y. Rajpure, Mater. Sci. Eng. B 122, 67 (2005)CrossRefGoogle Scholar
  14. 14.
    M.K.R. Khan, M. Azizar-Rahman, M. Shahjahan, M. Mozibur-Rahman, M.A. Hakim, D.K. Saha, J.U. Khan, Curr. Appl. Phys. 10, 790 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Ali Fatima, S. Devadason, T. Mahalingam, J. Mater. Sci. Mater. Electron. 25, 3466 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Shrividhya, G. Ravi, Y. Hayakawa, T. Mahalingam, J. Mater. Sci. Mater. Electron. 25, 3885–3894 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Sönmezoğlu, T.A. Termeli, S. Akın, İ. Askeroğlu, J. Sol-Gel. Sci. Technol. 67, 97 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Kumaravel, K. Ramamurthi, V. Krishnakumar, J. Phys. Chem. Solids 71, 1545 (2010)CrossRefGoogle Scholar
  19. 19.
    S.H. Jeong, J.W. Lee, S.B. Lee, J.H. Boo, Thin Solid Films 435, 78 (2003)CrossRefGoogle Scholar
  20. 20.
    V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han, Mater. Chem. Phys. 96, 326 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Hasanzadeh, A. Taherkhani, M. Ghorbani, Chin. J. Phys. 51, 540 (2013)Google Scholar
  22. 22.
    H. Oumous, H. Hadiri, Thin Solid Films 386, 87 (2001)CrossRefGoogle Scholar
  23. 23.
    S. Mou, G. Kangxian, B. Xiao, Superlattices Microstruct. 72, 72 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Maity, K.K. Chaltopadhyay, Sol. Energy Mater. Sol. Cells 90, 597 (2006)CrossRefGoogle Scholar
  25. 25.
    B. Saha, S. Das, K.K. Chaltopadhyay, Sol. Energy Mater. Sol. Cells 91, 1692 (2007)CrossRefGoogle Scholar
  26. 26.
    R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, P.K. Kahol, Appl. Surf. Sci. 254, 5868 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. J. Helen
    • 1
  • Suganthi Devadason
    • 2
  • T. Mahalingam
    • 3
  1. 1.Department of PhysicsKarunya UniversityCoimbatoreIndia
  2. 2.Department of PhysicsHindustan UniversityChennaiIndia
  3. 3.Department of Electrical and Computer EngineeringAjou UniversitySuwonSouth Korea

Personalised recommendations