Skip to main content
Log in

Influence of substrate temperature on the growth and properties of reactively sputtered In-rich InAlN films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium-rich InAlN films were prepared on Si (111) substrates by using reactive co-sputtering in a mixed Ar-N2 atmosphere. The substrate temperature was varied from room temperature to 300 °C to investigate the film’s growth and properties at different temperatures. Structural and optical properties of the films were evaluated through high resolution XRD and Raman spectroscopy respectively, surface morphology and roughness analysis was performed by using FE-SEM and AFM respectively, whereas the electrical characterizations were made through resistivity and current–voltage (I–V) measurements respectively. Highly c-axis oriented nanocrystalline InAlN films with wurtzite structure were obtained at a substrate temperature of 100 °C and above. Structural quality of the films was improved with increase of the substrate temperature. The Raman spectroscopy revealed A1 (LO) modes which became more intense by the increasing the substrate temperature. The electrical studies indicated n-type nature of InAlN film having electron concentration in the range 3 × 1019–20 × 1019 cm−3. The electrical resistivity exhibited a decreasing trend with increase of the deposition temperature. The I–V measurements showed a noticeable increase in the value of current by increasing the substrate temperature to 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Wang, R.W. Martin, D. Amabile, P.R. Edwards, S. Hernandez, E. Nogales, K.P. O’Donnell, K. Lorenz, E. Alves, V. Matias, A. Vantomme, D. Wolverson, I.M. Watson, J. Appl. Phys. 103, 073510-1–073510-3 (2008)

    Google Scholar 

  2. M. Kariya, S. Nitta, S. Yamaguchi, H. Kato, T. Takeuchi, C. Wetzel, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 37, L 697–L 699 (1998)

    Article  Google Scholar 

  3. C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, A. Strittmatter, J. Cryst. Growth 414, 105–109 (2015)

    Article  Google Scholar 

  4. A. Watanabe, J.J. Freedsman, R. Oda, T. Ito, T. Egawa, Appl. Phys. Express 7, 041002-1–041002-3 (2014)

    Article  Google Scholar 

  5. W.Y. Weng, S.J. Chang, T.J. Hsueh, C.L. Hsu, M.J. Li, W.C. Lai, Sens. Actuators B 140, 139–142 (2009)

    Article  Google Scholar 

  6. H.F. Liu, C.C. Tan, G.K. Dalapati, D.Z. Chi, J. Appl. Phys. 112, 063114-1–063114-5 (2012)

    Google Scholar 

  7. H.F. Liu, S.B. Dolmanan, S. Tripathy, G.K. Dalapati, C.C. Tan, D.Z. Chi, J. Phys. D Appl. Phys. 46, 095106-1–095106-7 (2013)

    Google Scholar 

  8. O. Ambacher, J. Phys. D Appl. Phys. 31, 2653–2710 (1998)

    Article  Google Scholar 

  9. M. Kariya, S. Nitta, S. Yamaguchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 38, L 984–L 986 (1999)

    Article  Google Scholar 

  10. S. Yamaguchi, M. Kariya, S. Nitta, H. Kato, T. Takeuchi, C. Wetzel, H. Amano, I. Akasaki, J. Cryst. Growth 195, 309–313 (1998)

    Article  Google Scholar 

  11. K.S. Kim, A. Saxler, P. Kung, M. Razeghi, K.Y. Lim, Appl. Phys. Lett. 71, 800–802 (1997)

    Article  Google Scholar 

  12. S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano, I. Akasaki, Appl. Phys. Lett. 76, 876–878 (2000)

    Article  Google Scholar 

  13. W. Terashima, S.B. Che, Y. Ishitani, A. Yoshikawa, Jpn. J. Appl. Phys. 45, L539–L542 (2006)

    Article  Google Scholar 

  14. H.K. Chauveau, P.D. Mierry, J.M. Chauveau, J.Y. Duboz, J. Cryst. Growth 316, 30–36 (2011)

    Article  Google Scholar 

  15. Q. Guo, H. Ogawa, A. Yoshida, J. Cryst. Growth 146, 462–466 (1995)

    Article  Google Scholar 

  16. H. Naoi, K. Fujiwara, S. Takado, M. Kurouchi, D. Muto, T. Araki, H. Na, Y. Nanishi, J. Electron. Mater. 36, 1313–1319 (2007)

    Article  Google Scholar 

  17. Y.H. Wu, Y.Y. Wong, W.C. Chen, D.S. Tsai, C.Y. Peng, J.S. Tian, L. Chang, E.Y. Chang, Mater. Res. Express 1, 015904-1–015904-9 (2014)

    Article  Google Scholar 

  18. W.C. Chen, Y.H. Wu, C.Y. Peng, C.N. Hsiao, L. Chang, Nano Scale Res. Lett. 9, 204-1–204-7 (2014)

    Google Scholar 

  19. A. Gadanecz, J. Bläsing, A. Dadgar, C. Hums, A. Krost, Appl. Phys. Lett. 90, 221906-1–221906-3 (2007)

    Article  Google Scholar 

  20. C. Hums, J. Bläsing, A. Dadgar, A. Diez, T. Hempel, J. Christen, A. Krost, K. Lorenz, E. Alves, Appl. Phys. Lett. 90, 022105-1–022105-3 (2007)

    Article  Google Scholar 

  21. Q.X. Guo, Y. Okazaki, Y. Kume, T. Tanaka, M. Nishio, H. Ogawa, J. Cryst. Growth 300, 151–154 (2007)

    Article  Google Scholar 

  22. H. He, Y. Cao, R. Fu, W. Guo, Z. Huang, M. Wang, C.H. Huang, H. Wang, Appl. Surf. Sci. 256, 1812–1816 (2010)

    Article  Google Scholar 

  23. T.-S. Yeh, J.-M. Wu, W.-H. Lan, Thin Solid Films 517, 3204–3207 (2009)

    Article  Google Scholar 

  24. Q. Han, C. Duan, G. Du, W. Shi, L. Ji, J. Electron. Mater. 39, 489–493 (2010)

    Article  Google Scholar 

  25. C.J. Dong, M. Xu, Q.Y. Chen, F.S. Liu, H.P. Zhou, Y. Wei, H.X. Ji, J. Alloys Compd. 479, 812–815 (2009)

    Article  Google Scholar 

  26. H. He, Y. Cao, R. Fu, H. Wang, J. Huang, C. Huang, M. Wang, Z. Deng, J. Mater. Sci. Mater. Electron. 21, 676–681 (2010)

    Article  Google Scholar 

  27. H.F. Liu, C.G. Li, K.K.A. Antwi, S.J. Chua, D.Z. Chi, Mater. Lett. 128, 344–348 (2014)

    Article  Google Scholar 

  28. N. Afzal, M. Devarajan, K. Ibrahim, J. Alloys Compd. 652, 407–414 (2015)

    Article  Google Scholar 

  29. M. Amirhoseiny, Z. Hassan, S.S. Ng, Microelectron. Int. 30, 63–67 (2013)

    Article  Google Scholar 

  30. B. Maleyre, S. Ruffenach, O. Briot, B. Gil, A.V. Lee, Superlattice Microstruct. 36, 517–526 (2004)

    Article  Google Scholar 

  31. L. Vegard, Zeitschriftfür Physik 5, 17–26 (1921)

    Article  Google Scholar 

  32. M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502-1–036502-40 (2009)

    Article  Google Scholar 

  33. B.D. Culity, R.S. Stock, Elements of X-ray Diffraction (Prentice-Hall, Englewood Cliff’s, NJ, 2001)

    Google Scholar 

  34. Y.C. Feng, D.E. Laughlin, D.N. Lembeth, J. Appl. Phys. 76, 7311–7316 (1994)

    Article  Google Scholar 

  35. S.H. Abud, Z. Hassan, F.K. Yam, Int. J. Electrochem. 7, 10038–10046 (2012)

    Google Scholar 

  36. M. Amirhoseiny, S.S. Ng, Z. Hassan, Mater. Sci. Semicond. Proc. 35, 216–221 (2015)

    Article  Google Scholar 

  37. T.T. Kang, A. Hashimoto, A. Yamamoto, Phys. Rev. B 79, 033301-1–033301-4 (2009)

    Google Scholar 

  38. Q. Han, C. Duan, G. Du, W. Shi, J. Mater. Res. 25, 1842–1846 (2010)

    Article  Google Scholar 

  39. Q. Guo, T. Tanaka, M. Nishio, H. Ogawa, Jpn. J. Appl. Phys. 47, 612–615 (2008)

    Article  Google Scholar 

  40. T.S. Oh, J.O. Kim, H. Jeong, Y.S. Lee, S. Nagarajan, K.Y. Lim, C.H. Hong, E.K. Suh, J. Phys. D Appl. Phys. 41, 095402-1–095402-5 (2008)

    Article  Google Scholar 

  41. R.B. Chung, F. Wu, R. Shivaraman, S. Keller, S.P. Denbaars, J.S. Speck, S. Nakamura, J. Cryst. Growth 324, 163–167 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

It is gratefully acknowledged the financial support provided by Universiti Sains Malaysia (USM), Malaysia and The World Academy of Sciences (TWAS), Italy for this work. The technical support of Mr. Jamil for the sputter deposition and Mr. Mushtaqim Abubakar for the XRD is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Afzal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, N., Devarajan, M. & Ibrahim, K. Influence of substrate temperature on the growth and properties of reactively sputtered In-rich InAlN films. J Mater Sci: Mater Electron 27, 4281–4289 (2016). https://doi.org/10.1007/s10854-016-4294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4294-y

Keywords

Navigation