Influence of substrate temperature on the growth and properties of reactively sputtered In-rich InAlN films

  • Naveed Afzal
  • Mutharasu Devarajan
  • Kamarulazizi Ibrahim


Indium-rich InAlN films were prepared on Si (111) substrates by using reactive co-sputtering in a mixed Ar-N2 atmosphere. The substrate temperature was varied from room temperature to 300 °C to investigate the film’s growth and properties at different temperatures. Structural and optical properties of the films were evaluated through high resolution XRD and Raman spectroscopy respectively, surface morphology and roughness analysis was performed by using FE-SEM and AFM respectively, whereas the electrical characterizations were made through resistivity and current–voltage (I–V) measurements respectively. Highly c-axis oriented nanocrystalline InAlN films with wurtzite structure were obtained at a substrate temperature of 100 °C and above. Structural quality of the films was improved with increase of the substrate temperature. The Raman spectroscopy revealed A1 (LO) modes which became more intense by the increasing the substrate temperature. The electrical studies indicated n-type nature of InAlN film having electron concentration in the range 3 × 1019–20 × 1019 cm−3. The electrical resistivity exhibited a decreasing trend with increase of the deposition temperature. The I–V measurements showed a noticeable increase in the value of current by increasing the substrate temperature to 300 °C.


Electrical Resistivity Substrate Temperature Deposition Temperature Phonon Mode Crystalline Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is gratefully acknowledged the financial support provided by Universiti Sains Malaysia (USM), Malaysia and The World Academy of Sciences (TWAS), Italy for this work. The technical support of Mr. Jamil for the sputter deposition and Mr. Mushtaqim Abubakar for the XRD is also acknowledged.


  1. 1.
    K. Wang, R.W. Martin, D. Amabile, P.R. Edwards, S. Hernandez, E. Nogales, K.P. O’Donnell, K. Lorenz, E. Alves, V. Matias, A. Vantomme, D. Wolverson, I.M. Watson, J. Appl. Phys. 103, 073510-1–073510-3 (2008)Google Scholar
  2. 2.
    M. Kariya, S. Nitta, S. Yamaguchi, H. Kato, T. Takeuchi, C. Wetzel, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 37, L 697–L 699 (1998)CrossRefGoogle Scholar
  3. 3.
    C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, A. Strittmatter, J. Cryst. Growth 414, 105–109 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Watanabe, J.J. Freedsman, R. Oda, T. Ito, T. Egawa, Appl. Phys. Express 7, 041002-1–041002-3 (2014)CrossRefGoogle Scholar
  5. 5.
    W.Y. Weng, S.J. Chang, T.J. Hsueh, C.L. Hsu, M.J. Li, W.C. Lai, Sens. Actuators B 140, 139–142 (2009)CrossRefGoogle Scholar
  6. 6.
    H.F. Liu, C.C. Tan, G.K. Dalapati, D.Z. Chi, J. Appl. Phys. 112, 063114-1–063114-5 (2012)Google Scholar
  7. 7.
    H.F. Liu, S.B. Dolmanan, S. Tripathy, G.K. Dalapati, C.C. Tan, D.Z. Chi, J. Phys. D Appl. Phys. 46, 095106-1–095106-7 (2013)Google Scholar
  8. 8.
    O. Ambacher, J. Phys. D Appl. Phys. 31, 2653–2710 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Kariya, S. Nitta, S. Yamaguchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 38, L 984–L 986 (1999)CrossRefGoogle Scholar
  10. 10.
    S. Yamaguchi, M. Kariya, S. Nitta, H. Kato, T. Takeuchi, C. Wetzel, H. Amano, I. Akasaki, J. Cryst. Growth 195, 309–313 (1998)CrossRefGoogle Scholar
  11. 11.
    K.S. Kim, A. Saxler, P. Kung, M. Razeghi, K.Y. Lim, Appl. Phys. Lett. 71, 800–802 (1997)CrossRefGoogle Scholar
  12. 12.
    S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano, I. Akasaki, Appl. Phys. Lett. 76, 876–878 (2000)CrossRefGoogle Scholar
  13. 13.
    W. Terashima, S.B. Che, Y. Ishitani, A. Yoshikawa, Jpn. J. Appl. Phys. 45, L539–L542 (2006)CrossRefGoogle Scholar
  14. 14.
    H.K. Chauveau, P.D. Mierry, J.M. Chauveau, J.Y. Duboz, J. Cryst. Growth 316, 30–36 (2011)CrossRefGoogle Scholar
  15. 15.
    Q. Guo, H. Ogawa, A. Yoshida, J. Cryst. Growth 146, 462–466 (1995)CrossRefGoogle Scholar
  16. 16.
    H. Naoi, K. Fujiwara, S. Takado, M. Kurouchi, D. Muto, T. Araki, H. Na, Y. Nanishi, J. Electron. Mater. 36, 1313–1319 (2007)CrossRefGoogle Scholar
  17. 17.
    Y.H. Wu, Y.Y. Wong, W.C. Chen, D.S. Tsai, C.Y. Peng, J.S. Tian, L. Chang, E.Y. Chang, Mater. Res. Express 1, 015904-1–015904-9 (2014)CrossRefGoogle Scholar
  18. 18.
    W.C. Chen, Y.H. Wu, C.Y. Peng, C.N. Hsiao, L. Chang, Nano Scale Res. Lett. 9, 204-1–204-7 (2014)Google Scholar
  19. 19.
    A. Gadanecz, J. Bläsing, A. Dadgar, C. Hums, A. Krost, Appl. Phys. Lett. 90, 221906-1–221906-3 (2007)CrossRefGoogle Scholar
  20. 20.
    C. Hums, J. Bläsing, A. Dadgar, A. Diez, T. Hempel, J. Christen, A. Krost, K. Lorenz, E. Alves, Appl. Phys. Lett. 90, 022105-1–022105-3 (2007)CrossRefGoogle Scholar
  21. 21.
    Q.X. Guo, Y. Okazaki, Y. Kume, T. Tanaka, M. Nishio, H. Ogawa, J. Cryst. Growth 300, 151–154 (2007)CrossRefGoogle Scholar
  22. 22.
    H. He, Y. Cao, R. Fu, W. Guo, Z. Huang, M. Wang, C.H. Huang, H. Wang, Appl. Surf. Sci. 256, 1812–1816 (2010)CrossRefGoogle Scholar
  23. 23.
    T.-S. Yeh, J.-M. Wu, W.-H. Lan, Thin Solid Films 517, 3204–3207 (2009)CrossRefGoogle Scholar
  24. 24.
    Q. Han, C. Duan, G. Du, W. Shi, L. Ji, J. Electron. Mater. 39, 489–493 (2010)CrossRefGoogle Scholar
  25. 25.
    C.J. Dong, M. Xu, Q.Y. Chen, F.S. Liu, H.P. Zhou, Y. Wei, H.X. Ji, J. Alloys Compd. 479, 812–815 (2009)CrossRefGoogle Scholar
  26. 26.
    H. He, Y. Cao, R. Fu, H. Wang, J. Huang, C. Huang, M. Wang, Z. Deng, J. Mater. Sci. Mater. Electron. 21, 676–681 (2010)CrossRefGoogle Scholar
  27. 27.
    H.F. Liu, C.G. Li, K.K.A. Antwi, S.J. Chua, D.Z. Chi, Mater. Lett. 128, 344–348 (2014)CrossRefGoogle Scholar
  28. 28.
    N. Afzal, M. Devarajan, K. Ibrahim, J. Alloys Compd. 652, 407–414 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Amirhoseiny, Z. Hassan, S.S. Ng, Microelectron. Int. 30, 63–67 (2013)CrossRefGoogle Scholar
  30. 30.
    B. Maleyre, S. Ruffenach, O. Briot, B. Gil, A.V. Lee, Superlattice Microstruct. 36, 517–526 (2004)CrossRefGoogle Scholar
  31. 31.
    L. Vegard, Zeitschriftfür Physik 5, 17–26 (1921)CrossRefGoogle Scholar
  32. 32.
    M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502-1–036502-40 (2009)CrossRefGoogle Scholar
  33. 33.
    B.D. Culity, R.S. Stock, Elements of X-ray Diffraction (Prentice-Hall, Englewood Cliff’s, NJ, 2001)Google Scholar
  34. 34.
    Y.C. Feng, D.E. Laughlin, D.N. Lembeth, J. Appl. Phys. 76, 7311–7316 (1994)CrossRefGoogle Scholar
  35. 35.
    S.H. Abud, Z. Hassan, F.K. Yam, Int. J. Electrochem. 7, 10038–10046 (2012)Google Scholar
  36. 36.
    M. Amirhoseiny, S.S. Ng, Z. Hassan, Mater. Sci. Semicond. Proc. 35, 216–221 (2015)CrossRefGoogle Scholar
  37. 37.
    T.T. Kang, A. Hashimoto, A. Yamamoto, Phys. Rev. B 79, 033301-1–033301-4 (2009)Google Scholar
  38. 38.
    Q. Han, C. Duan, G. Du, W. Shi, J. Mater. Res. 25, 1842–1846 (2010)CrossRefGoogle Scholar
  39. 39.
    Q. Guo, T. Tanaka, M. Nishio, H. Ogawa, Jpn. J. Appl. Phys. 47, 612–615 (2008)CrossRefGoogle Scholar
  40. 40.
    T.S. Oh, J.O. Kim, H. Jeong, Y.S. Lee, S. Nagarajan, K.Y. Lim, C.H. Hong, E.K. Suh, J. Phys. D Appl. Phys. 41, 095402-1–095402-5 (2008)CrossRefGoogle Scholar
  41. 41.
    R.B. Chung, F. Wu, R. Shivaraman, S. Keller, S.P. Denbaars, J.S. Speck, S. Nakamura, J. Cryst. Growth 324, 163–167 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Naveed Afzal
    • 1
  • Mutharasu Devarajan
    • 1
  • Kamarulazizi Ibrahim
    • 2
  1. 1.School of PhysicsUniversiti Sains Malaysia (USM)GelugorMalaysia
  2. 2.Institute of Nano Optoelectronics Research and TechnologyUniversiti Sains Malaysia (USM)GelugorMalaysia

Personalised recommendations